
Math 201 lecture for Monday, Week 5

Linear transformations

Linear transformations. We have now defined the objects of study—vector spaces. Next,
we need to consider the appropriate mappings between those objects—those that preserve
the linear structure.

Definition. Let V and W be vector spaces over a field F . A linear transformation from V
to W is a function

f : V →W

satisfying, for all v, v′ ∈ V and λ ∈ F ,

f(v + v′) = f(v) + f(v′) and f(λv) = λf(v).

Remarks. Using the notation from the definition:

• If f(v+v′) = f(v) +f(v′), we say f preserves addition. Note that the addition on the
left side is in V and the addition on the right side is in W . Thus, if V 6= W , they are
two different operations (with the same name). Similarly, if f(λv) = λf(v), we say f
preserves scalar multiplication.

• One may combine the two conditions, above, for linearity into one: for f to be linear,
we require

f(v + λv′) = f(v) + λf(v′)

for all v, v′ ∈ V and λ ∈ F .

• Synonyms for “linear transformation” are: “linear mapping” and “linear homomor-
phism”, often with the word “linear” dropped when clear from context (and it will be
since this is a course in linear algebra!).

• Our book restricts “linear transformation” to mean a linear transformation of the
form f : V → V , where the domain and codomain are equal. That is non-standard,
and we won’t use that terminology. Linear mappings from a vector space to itself are
called linear endomorphisms or linear self-mappings.

Template for a proof that a mapping is linear. Consider the function

f : R3 → R2

(x, y, z) 7→ (2x+ 3y, x+ y − 3z).

Claim: f is linear.
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Proof. Let (x, y, z), (x′, y′, z′) ∈ R3 and λ ∈ R.

f((x, y, z) + (x′, y′, z′)) = f(x+ x′, y + y′, z + z′)

= (2(x+ x′) + 3(y + y′), (x+ x′) + (y + y′)− 3(z + z′))

= ((2x+ 3y) + (2x′ + 3y′), (x+ y − 3z) + (x′ + y′ − 3z′))

= (2x+ 3y, x+ y − 3z) + (2x′ + 3y′, x′ + y′ − 3z′)

= f(x, y, z) + f(x′, y′, z′).

Thus, f preserves addition. Next,

f(λ(x, y, z)) = f(λx, λy, λz)

= (2(λx) + 3(λy), (λx+ λy − (3λz))))

= (λ(2x+ 3y), λ(x+ y − 3z))

= λ(2x+ 3y, x+ y − 3z)

= λf(x, y, z).

Thus, f preserves scalar multiplication.

Note: People sometimes confuse proofs that subsets are subspaces with proofs that map-
pings are linear. To prove that W ⊆ V is a subspace, we show that W is closed under
addition and scalar multiplication by taking u, v ∈W and λ ∈ F and showing u+ λv ∈W .
To prove f : V →W is linear, we show that f preserves addition and scalar multiplication.
Be careful not to confuse the words “closed under” with “preserves”.

Example. Rotation about the origin in the plane R2 is a linear transformation:

u

v

u
+
v

Exercise. Show that f : R→ R defined by f(x) = x2 is not linear.

Proof. We have f(1 + 1) = f(2) = 4 6= f(1) + f(1) = 1 + 1 = 2. �

The following proposition is often useful for showing a function is not linear.

Proposition 1. If f : V →W is linear, then f(~0V ) = ~0W .
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Proof. Since f is linear,

f(~0V ) = f(0 ·~0V ) = 0 · f(~0V ) = ~0W .

Thus, for instance,

f : R2 → R
(x, y) 7→ x+ 2y + 5

is not linear since f(0, 0) = 5 6= 0.

Proposition 2. (A linear mapping is determined by its action on a basis.) Let V and W
be vector spaces over F , and let B be a basis for V . For each b ∈ B, let wb ∈ W . Then
there exists a unique linear function f : V →W such that f(b) = wb.

Proof. We define f as follows: Given v ∈ V , since B is a basis, we can write v =
α1b1 + · · ·+ αkbk for some αi ∈ F , bi ∈ B, and k ∈ Z≥0. Define

f(v) := α1f(b1) + . . . αkf(bk) = α1wb1 + · · ·+ αkwbk .

Since B is a basis, the expression for v as a linear combination of elements in B is unique.
Hence, f is well-defined. Further, linearity of f forces us to define f(v) as we have. To see
that f is linear, let v, w ∈ V and λ ∈ R. Write v and w as linear combinations of the basis
vectors:

v = α1b1 + · · ·+ αkbk

w = β1b1 + · · ·+ βkbk

for some scalars αi and βi. It follows that

v + λw = (α1 + λβ1)b1 + · · ·+ (αk + λβk)bk.

Using the definition of f , we see

f(v + λw) = (α1 + λβ1)wb1 + · · ·+ (αk + λβk)wbk

= (α1wb1 + · · ·+ αkwbk) + λ(β1wb1 + · · ·+ βkwbk)

= f(v) + λf(w).

�

Terminology. We say the function f as in Proposition 2 has been defined on B then
extended linearly to all of V .

Example. Define a linear function f : R2 →M2×3(R) by

f(1, 0) =

(
1 0 2
3 −1 2

)
and f(0, 1) =

(
2 1 0
0 3 1

)
.
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What is f(2,−1)?

Solution. In general, we have

f(x, y) = f (x(1, 0) + y(0, 1))

= xf(1, 0) + yf(0, 1)

= x

(
1 0 2
3 −1 2

)
+ y

(
2 1 0
0 3 1

)

=

(
x+ 2y y 2x

3x −x+ 3y 2x+ y

)
.

In particular,

f(2,−1) = 2

(
1 0 2
3 −1 2

)
−
(

2 1 0
0 3 1

)
=

(
0 −1 4
6 −5 3

)
.

Question. What goes wrong if we try to define a linear function by specifying its values on
a non-basis? For instance, what happens if we try to define a linear function f : R2 → R2

by specifying the values for the non-basis {(1, 0), (2, 0)} as follows:

f(1, 0) = (3, 2) and f(2, 0) = (1, 1).

Note. Let V and W be vector spaces over F , and let X be a linearly subset of V . For
each x ∈ X, let wx ∈W . Then there exists a linear function f : V →W such that f(x) = wx

for all x ∈ W . To see this, let B be any completion of X to a basis for V , and apply
Proposition 2. The map created this way is not unique: we are free to choose any values
for elements of B \X (the value ~0 might be a natural choice).

Here is something interesting that we will talk more about later:

Definition. Let V and W be vector spaces over F . The collection of all linear functions
from V to W is denoted Hom(V,W ) or L(V,W ). It is a vector space over F under addition
and scalar multiplication of functions: for linear f, g : V →W ,

f + λg : V →W

v 7→ f(v) + λg(v).
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