
Math 201 lecture for Friday, Week 5

Rank-nullity theorem; Isomorphisms.

Let f : V →W be a linear mapping between vectors spaces V and W over a field F . Recall
the definitions from last time:

Definition. The kernel or null space of f is

N (f) := ker(f) := f−1({0W }) := {v ∈ V : f(v) = 0} .

The nullity1 of f is the dimension of the kernel.

The image or range of f is

R(f) = im(f) = f(V ) = {f(v) ∈W : v ∈ V } .

The rank of f is the dimension of the image.

Theorem. (Rank-nullity theorem) Let f : V → W be a linear mapping, and suppose
that V is finite-dimensional. Then

rank(f) + nullity(f) = dimV.

In other words, the dim(im(f)) + dim(ker(f)) = dimV .

Proof. Let K = {v1, . . . , vk} be a basis for ker(f) (and therefore, nullity(f) = k). Com-
plete K to a basis for V :

B = {v1, . . . , vk, vk+1, . . . , vn} .

To prove the theorem, it suffices to show that {f(vk+1), . . . , f(vn)} is a basis for image(f).
We first show linear independence. Suppose that

ak+1f(vk+1) + · · ·+ anf(vn) = 0W .

Since f is linear, it follows that

f(ak+1vk+1 + · · ·+ anvn) = ak+1f(vk+1) + · · ·+ anf(vn) = 0W .

Therefore, ak+1vk+1 + · · · + anvn ∈ ker(f). Since K = {v1, . . . , vk} is a basis for ker(f),
there are scalars a1, . . . , ak such that

ak+1vk+1 + · · ·+ anvn = a1v1 + · · ·+ akvk,

i.e.,
a1v1 + · · ·+ akvk − ak+1vk+1 − · · · − anvn = 0V .

1Don’t confuse this concept with the mullity of f , defined as follows: mullity(f) = p(f) + b(f) where p(f)
is the amount of party of f in the back and b(f) is the amount of business of f in the front.
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This is a linear relation among the vectors of B, the basis we constructed for V . Since B
is a linearly independent set, all of the ai must be 0. In particular, ak+1 = · · · = an = 0, as
we were trying to show.

Next, we show that {f(vk+1), . . . , f(vn)} spans im(f). We know that since B = {v1, . . . , vn}
is a basis for V that

{f(v1), . . . , f(vn)}
spans the image of f . However, v1, . . . , vk are in ker(f), so

im(f) = Span {f(v1), . . . , f(vk), f(vk+1), . . . , f(vn)}
= Span {0W , . . . , 0W , f(vk+1), . . . , f(vn)}
= Span {f(vk+1), . . . , f(vn)} .

Proposition 1. The linear mapping f : V → W is injective (i.e., one-to-one) if and only
if ker(f) = {0V }.

Proof. (⇒) First suppose that f is injective, and let v ∈ ker(f). Therefore, f(v) = 0W . We
also know that since f is linear, f(0V ) = 0W . So f(v) = 0W = f(0V ). Since f is injective
and f(v) = f(0V ), it follows that v = 0V . We have shown that ker(f) = {0V }.
(⇐) For the converse, now suppose that ker(f) = {0V }, and let u, v ∈ V with f(u) = f(v).
It follows that f(u − v) = f(u) − f(v) = 0W . Hence, u − v ∈ ker(f). However, we are
assuming ker(f) = {0V }. So u− v = 0V , which means u = v. Therefore, f is injective.

Proposition 2. Let S ⊆ V .

(a) If S is linearly dependent, then f(S) := {f(s) : s ∈ S} ⊆ W is linearly dependent.
(The image of a dependent set is dependent.)

(b) If f is injective and S is linearly independent, then f(S) ⊆W is linearly independent.
(The image of an independent set is independent provided f is injective.)

Proof. Suppose that
∑k

i=1 aisi = 0V for some ai ∈ F and si ∈ S. Since f is linear, we have

0W = f(0V ) = f(
∑k

i=1 aisi) =
∑k

i=1 aif(si).

Thus, f preserves linear dependencies, as claimed in part (a).

Suppose now that f is injective and S is linearly independent. If
∑k

i=1 aif(si) = 0W for
some ai ∈ F and si ∈ S, then since f is linear,

0W =
∑k

i=1 aif(si) = f(
∑k

i=1 aisi).

Therefore,
∑k

i=1 aisi is in the kernel of f . Since, f is injective, ker(f) = {0V } by Propo-

sition 1. It follows that
∑k

i=1 aisi = 0V . Then, since S is linearly independent, it follows
that ai = 0 for all i. This shows that f(S) is linearly independent.
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Definition. The linear function f : V → W is an isomorphism if there exists a linear
function g : W → V such that g ◦ f = idV and f ◦ g = idW . The function g is called the
inverse of f .

Remark. Suppose that f : V → W is an isomorphism. Then, just as proved in Math 112
for mappings of sets, it follows that f is bijective, i.e., both injective and surjective. For
mappings of sets, being bijective is equivalent to having an inverse. The same is true for
mappings of vector spaces: A linear function f : V →W is an isomorphism if and only if it
is bijective. It turns out that if a linear function is bijective, then its inverse mapping (as
a mapping of sets) is automatically linear. (Check this for yourself.)

Example. The space of 2 × 2 matrices over F is isomorphic to F 4. One isomorphism is
given by (

a b
c d

)
7→ (a, b, c, d).

Exercise. Write V ∼W if there is an isomophism V →W . Check that ∼ is an equivalence
relation.

Proposition 3. A linear mapping f : V → W is an isomorphism if and only if ker(f) =
{0V } and im(f) = W , (i.e., if and only if its kernel is trivial and it is surjective).

Proof. We have just seen that ker f = {0V } if and only if f is injective, and by definition
of surjectivity, f is surjective if and only if im(f) = W . Thus, the condition that ker(f) is
trivial and im(f) = W is equivalent to the bijectivity of f .

Theorem 4. Let V be a vector space over F . Then V is isomorphic to Fn if and only
if dimV = n.

Proof. (⇒) Suppose that f : V → Fn is an isomorphism with inverse g : Fn → V , and
let e1, . . . , en be the standard basis for Fn. Define vi = g(ei) ∈ V for i = 1, . . . , n. We
claim that B := {v1, . . . , vn} is a basis for V (and hence, dimV = n). First note that B is
linearly independent by Proposition 2 (a) since {e1, . . . , en} is linearly independent. Next,
to see that B spans, let v ∈ V , and write

f(v) =

n∑
i=1

aiei

for some ai ∈ F . It follows that

v = g(f(v)) = g (
∑n

i=1 aiei) =
∑n

i=1 aig(ei) =
∑n

i=1 aivi ∈ Span(B).

(⇐) Now suppose dimV = n. Choose a basis {b1, . . . , bn} for V , and let {e1, . . . , en}
be the standard basis for Fn. Define f : V → Fn by f(bi) = ei for i = 1, . . . , n and
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extending linearly. Recall what this means: given v ∈ V , there are unique αi ∈ F such
that v =

∑n
i=1 αibi. Then by definition of “extend linearly”,

f(v) =

n∑
i=1

αif(bi) =

n∑
i=1

αiei = (α1, . . . , αn) ∈ Fn.

Earlier, we called (α1, . . . , αn) the coordinates of v with respect to the ordered basis 〈b1, . . . , bn〉.
Suppose v ∈ ker(f), and write v =

∑n
i=1 αibi. Then 0W = f(v) =

∑n
i=1 αiei implies αi = 0

for all i since the ei are linearly independent. So v = 0V . This shows that the kernel of f
is trivial, and hence, f is injective. For surjectivity, note that the image contains all linear
combinations of the standard basis vectors, e1, . . . , en for Fn.

Remarks: Theorem 4 says that for each n = 0, 1, 2, . . . , there is essentially only one vector
space over F of dimension n. More precisely, under the equivalence relation V ∼W defined
earlier, there is one equivalence class for each natural number n. Theorem 4 and its proof
say that the difference between a vector space V of dimension n and Fn is the choice of a
basis. Once a basis B is chosen, we get an isomorphism V → Fn by sending each vector to
its coordinates with respect to B:

V → Fn

v 7→ [v]B.

The practical importance of this result is that if we have a problem involving vectors in V ,
we can use the isomorphism to translate problem into one about n-tuples in Fn. We apply
our algorithms, e.g., Gaussian elimination, to solve the problem in Fn and then use the
inverse of the isomorphism to translate the solution back to V .

Corollary 5. Let V and W be finite-dimensional vectors spaces. Then V and W are
isomorphic if and only if they have the same dimension.

Proof. First, suppose that f : V → W is an isomorphism, and let b1, . . . , bn be a basis
for V . By Proposition 2, f(b1), . . . , f(bn) are linearly independent, and since f is surjective,
they span W . So {f(b1), . . . , f(bn)} is a basis for W . Thus, the number of elements
in a basis for V is the same as the number of elements in a basis for W , which says
that dimV = dimW .

Conversely, suppose that dimV = dimW = n. By Theorem 4, we have isomorphisms
fV : V → Fn and fW : W → Fn. Let f−1

W : Fn → W be the inverse of fW . It follows that
the composition,

V
fV−−→ Fn f−1

W−−→W

is an isomorphism. (From Math 112, you know that a composition of bijections of sets is a
bijection of sets, and you should do the easy check that a composition of linear functions is
linear.)
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Proposition 6. Let f : V → W be a linear function, and let dimV = dimW < ∞. (An
important special case is f : V → V when dimV <∞.) Then the following are equivalent:

(a) f is injective (1-1),

(b) f is surjective (onto),

(c) f is an isomorphism.

Proof. The proof is left as an exercise. The central idea is to use the rank-nullity theorem
to relate injectivity and surjectivity.

Note: Proposition 6 is not true if the dimensions of V and W are not finite. For instance,
consider the infinite-dimensional vector space P(F ) = F [x] and the mapping

F [x]→ F [x]

f 7→ xf,

given by multiplication by x. For instance, under this mapping, 1 + x+ x2 7→ x+ x2 + x3.
This mapping is linear and injective, but not surjective. For instance, 1 is not in the image
(nor is any other constant besides 0).
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