Math 201 lecture for Friday, Week 5

Rank-nullity theorem; Isomorphisms.

Let f: V — W be a linear mapping between vectors spaces V and W over a field F'. Recall
the definitions from last time:

Definition. The kernel or null space of f is
N(f) =ker(f) = [ ({0w}) :== {v € V : f(v) = 0}.
The nullity® of f is the dimension of the kernel.

The image or range of f is
R(f) =im(f) = f(V) ={f(v) e W:veV}.
The rank of f is the dimension of the image.

Theorem. (Rank-nullity theorem) Let f: V' — W be a linear mapping, and suppose
that V is finite-dimensional. Then

rank(f) + nullity(f) = dim V.

In other words, the dim(im(f)) + dim(ker(f)) = dim V.

Proof. Let K = {v1,...,ux} be a basis for ker(f) (and therefore, nullity(f) = k). Com-
plete K to a basis for V:
B = {,Ula"'yvk:vvk‘-i-la"')vn}‘

To prove the theorem, it suffices to show that {f(vky1),..., f(vn)} is a basis for image(f).
We first show linear independence. Suppose that

a1 f (k1) + -+ + anf(vn) = O
Since f is linear, it follows that
flakirvpa + -+ anvn) = apgr f(Op41) + -+ anf(vn) = Ow.

Therefore, ag1vg41 + -+ + apv, € ker(f). Since K = {vy,...,v;} is a basis for ker(f),
there are scalars aq, ..., a; such that

Af+1Vk+1 + -+ apv, = a1 + -+ AV,

i.e.,
ajvy + -+ AUk — Ap1Vke1 — 00— ApUp = Oy,

'"Don’t confuse this concept with the mullity of f, defined as follows: mullity(f) = p(f) +b(f) where p(f)
is the amount of party of f in the back and b(f) is the amount of business of f in the front.



This is a linear relation among the vectors of B, the basis we constructed for V. Since B
is a linearly independent set, all of the a; must be 0. In particular, ax11 =--- =a, =0, as
we were trying to show.

Next, we show that {f(vgs1),-- ., f(vs)} spans im(f). We know that since B = {v1,...,v,}
is a basis for V' that

{f(vl)7 e ’f(vn)}

spans the image of f. However, vy,..., v are in ker(f), so

im(f) = Span{f(v1),..., f(vk), f(vkt1)s- -, fvn)}
= Span {Ow, ..., 0w, f(vrs1),-- -, f(on)}
= Span { f(vks1), .-+, f(va)}-
]

Proposition 1. The linear mapping f: V' — W is injective (i.e., one-to-one) if and only
if ker(f) = {0y }.

Proof. (=) First suppose that f is injective, and let v € ker(f). Therefore, f(v) = Oy. We
also know that since f is linear, f(0y) = Ow. So f(v) = Oy = f(Oy). Since f is injective
and f(v) = f(0y), it follows that v = Oy. We have shown that ker(f) = {0y }.

(<) For the converse, now suppose that ker(f) = {0y}, and let u,v € V with f(u) = f(v).
It follows that f(u —wv) = f(u) — f(v) = Ow. Hence, u — v € ker(f). However, we are
assuming ker(f) = {Oy}. So u — v = Oy, which means u = v. Therefore, f is injective. [J

Proposition 2. Let S C V.

(a) If S is linearly dependent, then f(S) := {f(s):s€ S} C W is linearly dependent.
(The image of a dependent set is dependent.)

(b) If f is injective and S is linearly independent, then f(S) C W is linearly independent.
(The image of an independent set is independent provided f is injective.)

Proof. Suppose that 2?21 a;s; = Oy for some a; € F and s; € S. Since f is linear, we have

Ow = f(Ov) = F(Zi aisi) = Tiy aif (s:).
Thus, f preserves linear dependencies, as claimed in part (a).
Suppose now that f is injective and S is linearly independent. If Ele aif(s;) = Oy for
some a; € F' and s; € S, then since f is linear,
k k
Ow = > i aif(si) = f(Qlimg @isi)-

Therefore, Zle a;s; is in the kernel of f. Since, f is injective, ker(f) = {0y} by Propo-
sition 1. It follows that Zle a;8; = Oy. Then, since S is linearly independent, it follows
that a; = 0 for all 4. This shows that f(.S) is linearly independent. O



Definition. The linear function f: V. — W is an isomorphism if there exists a linear
function g: W — V such that go f = idy and f o g = idy. The function g is called the
inverse of f.

Remark. Suppose that f: V — W is an isomorphism. Then, just as proved in Math 112
for mappings of sets, it follows that f is bijective, i.e., both injective and surjective. For
mappings of sets, being bijective is equivalent to having an inverse. The same is true for
mappings of vector spaces: A linear function f: V — W is an isomorphism if and only if it
is bijective. It turns out that if a linear function is bijective, then its inverse mapping (as
a mapping of sets) is automatically linear. (Check this for yourself.)

Example. The space of 2 x 2 matrices over F is isomorphic to F*. One isomorphism is

a b
( e d > — (a, b, c,d).

Exercise. Write V ~ W if there is an isomophism V' — W. Check that ~ is an equivalence
relation.

given by

Proposition 3. A linear mapping f: V — W is an isomorphism if and only if ker(f) =
{0y} and im(f) = W, (i.e., if and only if its kernel is trivial and it is surjective).

Proof. We have just seen that ker f = {0y} if and only if f is injective, and by definition
of surjectivity, f is surjective if and only if im(f) = W. Thus, the condition that ker(f) is
trivial and im(f) = W is equivalent to the bijectivity of f. O

Theorem 4. Let V be a vector space over F. Then V is isomorphic to F" if and only
if dimV = n.

Proof. (=) Suppose that f: V — F"™ is an isomorphism with inverse g: F — V, and
let eq,...,e, be the standard basis for F™. Define v; = g(e;) € V for ¢ = 1,...,n. We
claim that B := {v1,...,v,} is a basis for V' (and hence, dim V' = n). First note that B is
linearly independent by Proposition 2 (a) since {eq,...,e,} is linearly independent. Next,
to see that B spans, let v € V| and write

flv) = Z a;e;
i=1
for some a; € F. It follows that
v=g(f(v)) =9 i aiei) = 201 aigle;) = 3711, aiv; € Span(B).

(<) Now suppose dimV = n. Choose a basis {b1,...,b,} for V, and let {e1,...,e,}
be the standard basis for F™. Define f: V. — F™ by f(b;)) = e; for i = 1,...,n and



extending linearly. Recall what this means: given v € V, there are unique o; € F' such
that v =) | a;b;. Then by definition of “extend linearly”,

flv) = Zaif(bi) = Zaiez’ = (a1,...,an) € F™.
i=1 i=1

Earlier, we called (a1, . .., ay) the coordinates of v with respect to the ordered basis (by, . .., by,).

Suppose v € ker(f), and write v =Y | a;b;. Then Oy = f(v) = Y 1| aje; implies a; = 0
for all 7 since the e; are linearly independent. So v = 0y,. This shows that the kernel of f
is trivial, and hence, f is injective. For surjectivity, note that the image contains all linear
combinations of the standard basis vectors, eq,...,e, for F". O

Remarks: Theorem 4 says that for each n = 0,1, 2,..., there is essentially only one vector
space over I’ of dimension n. More precisely, under the equivalence relation V' ~ W defined
earlier, there is one equivalence class for each natural number n. Theorem 4 and its proof
say that the difference between a vector space V' of dimension n and F™ is the choice of a
basis. Once a basis B is chosen, we get an isomorphism V' — F™ by sending each vector to
its coordinates with respect to B:

V—F"
v [v]B.

The practical importance of this result is that if we have a problem involving vectors in V,
we can use the isomorphism to translate problem into one about n-tuples in F". We apply
our algorithms, e.g., Gaussian elimination, to solve the problem in F™ and then use the
inverse of the isomorphism to translate the solution back to V.

Corollary 5. Let V and W be finite-dimensional vectors spaces. Then V and W are
isomorphic if and only if they have the same dimension.

Proof. First, suppose that f: V — W is an isomorphism, and let b1,...,b, be a basis
for V. By Proposition 2, f(b1),..., f(b,) are linearly independent, and since f is surjective,
they span W. So {f(b1),...,f(by)} is a basis for W. Thus, the number of elements
in a basis for V is the same as the number of elements in a basis for W, which says
that dim V' = dim W.

Conversely, suppose that dimV = dimW = n. By Theorem 4, we have isomorphisms
fr:V— F"and fijy: W — F". Let fV_Vlz F™ — W be the inverse of fy. It follows that
the composition,
-1
v Lvy o Jw
is an isomorphism. (From Math 112, you know that a composition of bijections of sets is a
bijection of sets, and you should do the easy check that a composition of linear functions is
linear.) O



Proposition 6. Let f: V — W be a linear function, and let dimV = dim W < co. (An
important special case is f: V — V when dim V' < oc.) Then the following are equivalent:

(a) f is injective (1-1),
(b) f is surjective (onto),
(c) f is an isomorphism.

Proof. The proof is left as an exercise. The central idea is to use the rank-nullity theorem
to relate injectivity and surjectivity. O

Note: Proposition 6 is not true if the dimensions of V and W are not finite. For instance,
consider the infinite-dimensional vector space P(F') = F[z] and the mapping

f=af,
given by multiplication by x. For instance, under this mapping, 1 + = + 2% — x + 2 + 23.

This mapping is linear and injective, but not surjective. For instance, 1 is not in the image
(nor is any other constant besides 0).



