Math 201 lecture for Monday, Week 4
Dimension I
Recall the following from last time:

e A set B is a basis for V if it

— is linearly independent, and

— spans V.

e If B is a basis for V, each element of V can be expressed uniquely as a linear combi-
nation of vectors in B.

o If B = (v1,...,v,) is an ordered basis for V, then the coordinates of v € V with
respect to B are (a1, ...,a,) where

v =aiv1 + -+ anvn,.

Example. Find the coordinates of (7,—6) € R? with respect to the ordered basis B =
((5,3),(1,4)).
Solution. We need to find a,b € R such that
(7,—6) = a(5,3) + b(1,4).
Therefore, we solve the system of equations
S5a+b=17
3a + 4b = —6.

Applying our algorithm yields a = 2 and b = —3. So the coordinates of (7, —6) with respect
to B are given by (2, —3). We write

[(77 _6)]3 = (2a _3)
Figure 1 gives the geometry. The basis vectors are in blue, and the red vectors indicate
how (7,—6) is a linear combination of the basis vectors.
Remark. Let B = (v1,...,v,) be an ordered basis for a vector space V. Then taking
coordinates defines a bijective (why?) function
¢:V—> F"
v = [v]B.

This function has an important property: it preserves linear structure. By this, we mean
the following: let u,v € V and let A € F', then we claim that

P(u+ Av) = ¢(u) + Ad(v). (1)
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Figure 1: The coordinates of (7,—6) with respect to the ordered basis ((5,3), (1,4)).

Note that addition and scalar multiplication happens in V on the left-hand side of this
equation, and they happen in F™ on the right-hand side. The fact that ¢ is bijective and
preserves linear structure means that as vector spaces V and F™ are “essentially the same”.
We can be more precise when we introduce linear transformations next week. For now, let
us prove that equation (1) holds. We express u and v in terms of the basis:

U= ajv] + -+ apvy
v=>bvy + -+ byun,.

It follows that
u+ A = (a1 + Ab1)v1 + -+ + (an, + Aby)vp,.

Then

o(u+ M) = [u+ g

(a1 + Ab1, ..., an + Aby)
(a1,...,ap) + N1, ...,by)
[ulg + Alv]s

= ¢(u) + Ag(v).

Definition. A vector space is finite-dimensional if it has a basis with a finite number of
elements. If a vector space is not finite-dimensional, it is infinite-dimensional.



Examples. The following vector spaces are finite-dimensional:

— F™ (has a basis with n elements)
— P4(F) = Flz]<q (has a basis with d + 1 elements)
— Mpxn (has a basis with m x n elements)
— C as a vector space over R (basis {1,7}).
The following are infinite-dimensional:
- P(F) = Fla
~-RE={f:R =R}
— {f: R — R: fis continuous}
- {f: R — R: f is differentiable}
— R as a vector space over Q

— C as a vector space over Q.

Our goal today is to show that if V is a finite-dimensional vector space, then every basis
for V has the same number of elements. Thus, the following definition makes sense:

Definition. If V is a finite-dimensional vector space, then the dimension of V, de-
noted dimV or dimg V, if we want to make the scalar field explicit, is the number of
elements in any of its bases.

Exchange Lemma. Suppose B = {v1,...,v,} is a basis for a vector space V over a
field F. Further, suppose that

w=aiv1+- - +apv, €V (*)

with a; € F, and such that ay # 0 for some ¢ € {1,...,n}. Let B’ be the set of vectors
obtained from B by exchanging w for vy, i.e., B’ := (B \ {v¢}) U{w}. Then B’ is also a
basis for V.

Proof. We first show that B’ is linearly independent. For ease of notation, we may assume
that £ =1, i.e., that a; # 0. Suppose we have a linear relation among the elements of B’:

bw + bovg + -+ - + brv, =0
Substituting for w:

0 =b(a1v1 + -+ + apvy) + bova + - - - + byvy = bajvy + (baz + ba)ve + - - - + (bag + by)vy.



Since the v; are linearly independent,
ba; = bay + by = --- = ba, + b, = 0.

Since a; # 0, it follows that b = 0 and then that by = --- = b, = 0, as well. Therefore, B’
is linearly independent.

We now show that B’ spans V. First, solve for v; in (%):

1 as Qy,
’Ul = —w — 7'[}2 —_ tt T T .
al al a n

To see that B’ spans, take v € V. Since B is a basis, v can be written as a linear combination
of B = {v1,...,v,}, but then substituting the above expression for v; will express v as a
linear combination of B" = {w,ve, ..., v,}, as required:

vV=cCv1+ -+ cpvp

1 as an
=|—w——v——— vy | + U2+ +Cpuy
1 as (279}
=—w+|(—-——+c)vat+- -+ |——+cn|Vn
al al ai

Corollary. Suppose B = {vi,...,v,} is a basis for a vector space V over a field F.
Further, suppose that w € V is nonzero. Then there exists ¢ € {1,...,n} such that
B’ := (B \ {v/}) U{w} is also a basis for V.

O]

Theorem. In a finite-dimensional vector space, every basis has the same number of ele-
ments.

Proof. Let V be a finite-dimensional vector space. Among all the bases for V, let B =
{u1,...,u,} be one of minimal size. Since B has minimal size, we know that n = |B| < |C/.
Therefore C' contains at least n distinct vectors wy, . .., w, and possibly more. (Our goal is
to show that, in fact, C' contains no others.)

To take care of a trivial case, suppose B = () (the case n = 0). In that case, we have
V = Span(C) = Span(B) = Span()) = {5} :

The only linearly independent set whose span is {6} is (). So in this case, 0 = |C| = |B],
as desired.

Now suppose that n > 1. We would again like to show that C' has the same number
of elements as B. The idea is to start with B, then use the exchange lemma to swap



in the n elements wy,...,w, from C, one at a time, maintaining a basis at each step.
To that end, let By = B and consider w; € C. By the exchange lemma, we get a new
basis By by swapping w; with some uy € By. For ease of notation, let’s suppose that ¢ = 1.
Therefore, By = {wi,u2,...,u,}. Since Bj is a basis for V, it is linearly independent
and V' = Span(B;) = Span(B) = Span(C).

Next, consider we € C. Since Bj is a basis, we know wy € Span(Bj), hence, we can write
Wo = a1wWi + a2u + ... aplny

for some a; € F. Since w; and wsy are linearly independent, at least one of ao, ..., a, is
nonzero. Without loss of generality, suppose a2 # 0. Then by the exchange algorithm, Bs :=
{wy,we,us, ..., u,} is a basis. Continuing in this way, we eventually reach the basis B,, =
{wy,...,w,} C C. In fact, we must have B, = C. Otherwise, there is a w € C \ B,
Since Bj, is a basis, w € Span(By), in other words, w = > | dw; for some d; € F. But
that can’t happen since C is a basis: it’s elements are linearly independent. So, in fact, C
also has n elements. O

Remark. If V is infinite-dimensional, it turns out that any two bases have the same
cardinality. The above proof does not work to prove that, though.



