
Math 201 lecture for Monday, Week 4

Dimension I

Recall the following from last time:

• A set B is a basis for V if it

– is linearly independent, and

– spans V .

• If B is a basis for V , each element of V can be expressed uniquely as a linear combi-
nation of vectors in B.

• If B = 〈v1, . . . , vn〉 is an ordered basis for V , then the coordinates of v ∈ V with
respect to B are (a1, . . . , an) where

v = a1v1 + · · ·+ anvn.

Example. Find the coordinates of (7,−6) ∈ R2 with respect to the ordered basis B =
〈(5, 3), (1, 4)〉.

Solution. We need to find a, b ∈ R such that

(7,−6) = a(5, 3) + b(1, 4).

Therefore, we solve the system of equations

5a+ b = 7

3a+ 4b = −6.

Applying our algorithm yields a = 2 and b = −3. So the coordinates of (7,−6) with respect
to B are given by (2,−3). We write

[(7,−6)]B = (2,−3).

Figure 1 gives the geometry. The basis vectors are in blue, and the red vectors indicate
how (7,−6) is a linear combination of the basis vectors.

Remark. Let B = 〈v1, . . . , vn〉 be an ordered basis for a vector space V . Then taking
coordinates defines a bijective (why?) function

φ : V → Fn

v 7→ [v]B.

This function has an important property: it preserves linear structure. By this, we mean
the following: let u, v ∈ V and let λ ∈ F , then we claim that

φ(u+ λv) = φ(u) + λφ(v). (1)
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Figure 1: The coordinates of (7,−6) with respect to the ordered basis 〈(5, 3), (1, 4)〉.

Note that addition and scalar multiplication happens in V on the left-hand side of this
equation, and they happen in Fn on the right-hand side. The fact that φ is bijective and
preserves linear structure means that as vector spaces V and Fn are “essentially the same”.
We can be more precise when we introduce linear transformations next week. For now, let
us prove that equation (1) holds. We express u and v in terms of the basis:

u = a1v1 + · · ·+ anvn

v = b1v1 + · · ·+ bnvn.

It follows that
u+ λv = (a1 + λb1)v1 + · · ·+ (an + λbn)vn.

Then

φ(u+ λv) = [u+ λv]B

= (a1 + λb1, . . . , an + λbn)

= (a1, . . . , an) + λ(b1, . . . , bn)

= [u]B + λ[v]B

= φ(u) + λφ(v).

Definition. A vector space is finite-dimensional if it has a basis with a finite number of
elements. If a vector space is not finite-dimensional, it is infinite-dimensional.
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Examples. The following vector spaces are finite-dimensional:

– Fn (has a basis with n elements)

– Pd(F ) = F [x]≤d (has a basis with d+ 1 elements)

– Mm×n (has a basis with m× n elements)

– C as a vector space over R (basis {1, i}).

The following are infinite-dimensional:

– P(F ) = F [x]

– RR = {f : R→ R}

– {f : R→ R : f is continuous}

– {f : R→ R : f is differentiable}

– R as a vector space over Q

– C as a vector space over Q.

Our goal today is to show that if V is a finite-dimensional vector space, then every basis
for V has the same number of elements. Thus, the following definition makes sense:

Definition. If V is a finite-dimensional vector space, then the dimension of V , de-
noted dimV or dimF V , if we want to make the scalar field explicit, is the number of
elements in any of its bases.

Exchange Lemma. Suppose B = {v1, . . . , vn} is a basis for a vector space V over a
field F . Further, suppose that

w = a1v1 + · · ·+ anvn ∈ V (?)

with ai ∈ F , and such that a` 6= 0 for some ` ∈ {1, . . . , n}. Let B′ be the set of vectors
obtained from B by exchanging w for v`, i.e., B′ := (B \ {v`}) ∪ {w}. Then B′ is also a
basis for V .

Proof. We first show that B′ is linearly independent. For ease of notation, we may assume
that ` = 1, i.e., that a1 6= 0. Suppose we have a linear relation among the elements of B′:

bw + b2v2 + · · ·+ bnvn = 0

Substituting for w:

0 = b(a1v1 + · · ·+ anvn) + b2v2 + · · ·+ bnvn = ba1v1 + (ba2 + b2)v2 + · · ·+ (ba3 + bn)vn.
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Since the vi are linearly independent,

ba1 = ba2 + b2 = · · · = ban + bn = 0.

Since a1 6= 0, it follows that b = 0 and then that b2 = · · · = bn = 0, as well. Therefore, B′

is linearly independent.

We now show that B′ spans V . First, solve for v1 in (?):

v1 =
1

a1
w − a2

a1
v2 − · · · −

an
a n

.

To see that B′ spans, take v ∈ V . Since B is a basis, v can be written as a linear combination
of B = {v1, . . . , vn}, but then substituting the above expression for v1 will express v as a
linear combination of B′ = {w, v2, . . . , vn}, as required:

v = c1v1 + · · ·+ cnvn

=

(
1

a1
w − a2

a1
v2 − · · · −

an
a n

vn

)
+ c2v2 + · · ·+ cnvn

=
1

a1
w +

(
−a2
a1

+ c2

)
v2 + · · ·+

(
−an
a1

+ cn

)
vn.

Corollary. Suppose B = {v1, . . . , vn} is a basis for a vector space V over a field F .
Further, suppose that w ∈ V is nonzero. Then there exists ` ∈ {1, . . . , n} such that
B′ := (B \ {v`}) ∪ {w} is also a basis for V .

Theorem. In a finite-dimensional vector space, every basis has the same number of ele-
ments.

Proof. Let V be a finite-dimensional vector space. Among all the bases for V , let B =
{u1, . . . , un} be one of minimal size. Since B has minimal size, we know that n = |B| ≤ |C|.
Therefore C contains at least n distinct vectors w1, . . . , wn and possibly more. (Our goal is
to show that, in fact, C contains no others.)

To take care of a trivial case, suppose B = ∅ (the case n = 0). In that case, we have

V = Span(C) = Span(B) = Span(∅) =
{
~0
}
.

The only linearly independent set whose span is
{
~0
}

is ∅. So in this case, 0 = |C| = |B|,
as desired.

Now suppose that n ≥ 1. We would again like to show that C has the same number
of elements as B. The idea is to start with B, then use the exchange lemma to swap
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in the n elements w1, . . . , wn from C, one at a time, maintaining a basis at each step.
To that end, let B0 = B and consider w1 ∈ C. By the exchange lemma, we get a new
basis B1 by swapping w1 with some u` ∈ B0. For ease of notation, let’s suppose that ` = 1.
Therefore, B1 = {w1, u2, . . . , un}. Since B1 is a basis for V , it is linearly independent
and V = Span(B1) = Span(B) = Span(C).

Next, consider w2 ∈ C. Since B1 is a basis, we know w2 ∈ Span(B1), hence, we can write

w2 = a1w1 + a2u2 + . . . anun

for some ai ∈ F . Since w1 and w2 are linearly independent, at least one of a2, . . . , an is
nonzero. Without loss of generality, suppose a2 6= 0. Then by the exchange algorithm, B3 :=
{w1, w2, u3, . . . , un} is a basis. Continuing in this way, we eventually reach the basis Bn =
{w1, . . . , wn} ⊆ C. In fact, we must have Bn = C. Otherwise, there is a w ∈ C \ Bn.
Since Bn is a basis, w ∈ Span(Bn), in other words, w =

∑n
i=1 diwi for some di ∈ F . But

that can’t happen since C is a basis: it’s elements are linearly independent. So, in fact, C
also has n elements.

Remark. If V is infinite-dimensional, it turns out that any two bases have the same
cardinality. The above proof does not work to prove that, though.
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