
Math 201 lecture for Wednesday, Week 3

Linear independence

Definition. A set S ⊂ V is linearly dependent if there exist distinct1 u1, . . . , un ∈ S,
for some n ≥ 1, and scalars a1, . . . , an, not all zero, such that

a1u1 + · · ·+ anun = 0.

We call the above expression a non-trivial dependence relation among the ui.

Example. The empty set is not linearly dependent.

Example. If 0 ∈ S, then S is linearly dependent. For instance, 1 · 0 = 0 is a
non-trivial dependence relation.

Example. Let S = {(1,−1, 0), (−1, 0, 2), (−5, 3, 4)} ⊂ R3. Is S linearly dependent?
We look for a1, a2, a3 ∈ R such that

a1(1,−1, 0) + a2(−1, 0, 2) + a3(−5, 3, 4) = (0, 0, 0),

i.e., such that
(a1 − a2 − 5a3,−a1 + 3a3, 2a2 + 4a3) = (0, 0, 0).

So we are looking for a solution to the system of linear equations

a1 − a2 − 5a3 = 0

−a1 + 3a3 = 0

2a2 + 4a3 = 0.

Apply our algorithm: 1 −1 −5 0
−1 0 3 0

0 2 4 0

 r2→r2+r1−−−−−−→

 1 −1 −5 0
0 −1 −2 0
0 2 4 0

 r2→−r2−−−−→

 1 −1 −5 0
0 1 2 0
0 2 4 0

 r1→r1+r2−−−−−−→
r3→r3−2r2

 1 0 −3 0
0 1 2 0
0 0 0 0

 .

Converting back to a system of equations and solving for the pivot variables gives

a1 = 3a3, a2 = −2a3,

1Note the easily forgotten but necessary word “distinct”, here.
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and a3 is arbitrary. Take a3 = 1 to get the solution a1 = 3, a2 = −2, and a3 = 1:

3(1,−1, 0)− 2(−1, 0, 2) + (−5, 3, 4) = (0, 0, 0).

Therefore, these vectors are linearly dependent.

Proposition 1. Let S ⊆ V . Then S is linearly dependent if and only if there
exists v ∈ S such that v is a linear combination of vectors in S \ {v}, i.e., if and only
if v ∈ Span(S \ {v}).

Proof. First note that we may assume S 6= ∅ since the empty set is not linearly
dependent.

(⇒) Suppose a1u1 + · · · + anun = 0 for distinct ui ∈ S and ai ∈ F , not all zero.
Without loss of generality, we may assume that a1 6= 0. In that case, we have

u1 = −a2
a1
u2 −

a3
a1
u3 − · · · −

an
a1
un,

expressing u1 as a linear combination of elements in S \ {u1}. Note the special case
where S = {0}. The result still holds in that case since {0} = Span(∅). By definition,
the empty linear combination is 0.

(⇐) Say v = a1u1 + · · ·+ anun with distinct ui ∈ S \ {v} and v ∈ S. Then

a1u1 + · · ·+ anun − v = 0

shows that S is linearly dependent.

Definition. A set S ⊂ V is linearly independent if it is not linearly dependent.
This means that for all n ≥ 1 and distinct u1, . . . , un ∈ S, if a1u1 + · · · + anun = 0
for some ai ∈ F , then a1 = · · · = an = 0. (In particular, the empty set is linearly
independent.)

Remark. We say there is a linear relation among vectors u1, . . . , un if there exist
ai ∈ F such that a1u1 + · · · + anun = 0. The linear relation is trivial if all ai = 0.
Thus, a subset S of V is linearly independent if every linear relation distinct elements
of S is trivial.

IMPORTANT. To prove that a set of (distinct) vectors S = {v1, . . . , vk} is linearly
independent start by writing the following:

Suppose that
a1v1 + · · ·+ akvk = 0

for some a1, . . . , ak ∈ F .
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The goal is then to use some knowledge you are given about the vectors v1, . . . , vk to
show that the relation is trivial, i.e., ai = 0 for all i.

AVOID. Another way to prove that a set of vectors S = {v1, . . . , vk} is linearly
independent is to suppose that some vi is a linear combination of the vectors in
S \ {vi} or to suppose that there is some nontrivial linear combination of elements
in S, and then show a contradiction arises. Whenever tempted to give such a proof,
check to see if the standard proof, described just above, would be clearer (as it almost
always will).

Examples.

• The set {u} is linearly independent for any nonzero u ∈ V : if λu = 0 for
some λ 6= 0, then scaling by 1/λ would give u = 0. But we are supposing u 6= 0.
(Here is a case where the indirect proof of independence seems warranted.)

• S = {(1,−1, 0), (−1, 0, 2), (0, 1, 1)} ⊂ R is linearly independent. To see this, we
follow the standard proof. Suppose that

a(1,−1, 0) + b(−1, 0, 2) + c(0, 1, 1) = 0,

which means
a− b = 0

−a + c = 0

2b+ c = 0.

Apply our algorithm (I’ll just show the result of row reduction): 1 −1 0 0
−1 0 1 0

0 2 1 0

 
 1 0 0 0

0 1 0 0
0 0 1 0

 .

Thus, the only solution is a = b = c = 0.

• The set S = {1 + x, 1 + x + x2} ⊂ P2(R) = R[x]≤2 is linearly independent. To
see this, suppose that

a(1 + x) + b(1 + x+ x2) = 0

for some a, b ∈ R. It follows that

(a+ b) + (a+ b)x+ bx2 = 0,

and, therefore, a + b = 0 (the coefficient the constant term or of the x-term)
and b = 0 (the coefficient of the x2-term). It then follows that a = b = 0.
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Problem (leading to an important algorithm). Let

S = ((2, 0, 0), (0, 1, 0), (2, 2, 0), (0, 3, 1), (3, 0, 1)) .

Find a linearly independent subset of S and write the remaining vectors as linear
combinations of vectors in that subset.

Solution. Look for linear relations

c1(2, 0, 0) + c2(0, 1, 0) + c3(2, 2, 0) + c4(0, 3, 1) + c5(3, 0, 1) = (0, 0, 0).

Convert the above relation to as system of three homogeneous linear equations in
c1, c2, c3, c4, c5 and solve: 2 0 2 0 3 0

0 1 2 3 0 0
0 0 0 1 1 0

 
 1 0 1 0 3

2
0

0 1 2 0 −3 0
0 0 0 1 1 0

 .

(Note that the first matrix has the vectors in S as columns.) So the solution space is(
−c3 −

3

2
c5,−2c3 + 35, c3,−c5, c5 : c3, c5 ∈ R

)
,

or, in parametric formc3

−1
−2

1
0
0

+ c5


−3

2

3
0
−1

1

 : c3, c5 ∈ R

 .

Let T be the set of columns in our original matrix with the same indices as those
for the non-free (i.e., pivot or leading) variables in the row-reduced matrix. In other
words,

T =


 2

0
0

 ,

 0
1
0

 ,

 0
3
1

 .

We claim that T is linearly independent. Suppose there is a linear relation (switching
to row notation for convenience):

a(2, 0, 0) + b(0, 1, 0) + c(0, 3, 1) = 0.
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To show that a = b = c = 0 is the only solution, we convert to a matrix and row-
reduce as usual:  2 0 0

0 1 3
0 0 1

 
 1 0 0

0 1 0
0 0 1

 .

Therefore, we must have a = b = c = 0, as claimed. Important: In fact, there was
no need to do that last computation since we have already done it. To see that, go
back to our original row-reduction 2 0 2 0 3 0

0 1 2 3 0 0
0 0 0 1 1 0

 
 1 0 1 0 3

2
0

0 1 2 0 −3 0
0 0 0 1 1 0


and only pay attention to the first, second, and fourth columns. So the verification
that T is linearly independent was secretly guaranteed by its construction.

It remains to be shown that the remaining columns (those corresponding to the free
variables), i.e., (2, 2, 0) and (3, 0, 1), in row notation) are in the span of T . We have
found all solutions to

c1(2, 0, 0) + c2(0, 1, 0) + c3(2, 2, 0) + c4(0, 3, 1) + c5(3, 0, 1) = (0, 0, 0) (1)

and found that c3 and c5 are free variables. To see that (2, 2, 0) is in the span of T ,
find the solution to our system for which (c3, c5) = (1, 0), then solve for (2, 2, 0) in (1).
The solution in this case is 

c1
c2
c3
c4
c5

 =


−1
−2

1
0
0


Therefore,

−(2, 0, 0)− 2(0, 1, 0) + 1 · (2, 2, 0) + 0 · (0, 3, 1) + 0 · (3, 0, 1) = (0, 0, 0),

and, thus,
(2, 2, 0) = (2, 0, 0) + 2(0, 1, 0).

Similarly, to show (3, 0, 1) is in the span of T , we set (c3, c5) = (0, 1). The corre-
sponding solution is 

c1
c2
c3
c4
c5

 =


−3

2

3
0
−1

1


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Therefore,

−3

2
(2, 0, 0) + 3(0, 1, 0) + 0 · (2, 2, 0)− 1 · (0, 3, 1) + 1 · (3, 0, 1) = (0, 0, 0),

Solving for (3, 0, 1) gives

(3, 0, 1) =
3

2
(2, 0, 0)− 3(0, 1, 0) + (0, 3, 1).

We summarize the underlying important algorithm: Let S = {v1, . . . , vk} ∈ F n. To
find a linearly independent subset T of S such that Span(T ) = Span(S):

• Let M be the matrix with columns v1, . . . , vk.

• Compute M ′, the row-reduced form of M .

• Let j1, . . . , jd be the indices of the pivot columns of M ′ (the ones containing the
leading 1s).

• Set T = {vj1 , . . . , vjd}.

Note: The set T is a subset of the columns of M not of M ′!

The elements of S\T correspond to the free variables, and we can write these elements
as linear combinations of the elements of T by setting each free variable in turn equal
to 1 and setting the remaining free variables equal to 0.

We end with a result of fundamental importance:

Theorem. Let S ⊆ V be linearly independent, and let v ∈ Span(S). Then v
has a unique expression as a linear combination of elements of S. In other words,
if v =

∑k
i=1 aiui and v =

∑`
i=1 biwi for some nonzero ai, bi ∈ F and some distinct

ui ∈ S and distinct wi ∈ S, then up to re-indexing, we have k = `, ui = wi, and ai = bi
for all i.

Proof. Say v =
∑n

i=1 aiui and v =
∑n

i=1 biui for some ai, bi ∈ F and ui ∈ S. (By
letting some ai and bi equal zero, these expressions represent two arbitrary represen-
tations of v as linear combinations of elements of S, i.e., we can use the same ui and n
for both expressions.) It follows that

0 = v − v =
n∑

i=1

aiui −
n∑

i=1

biui =
n∑

i=1

(ai − bi)ui.

Since S is linearly independent, it follows that ai − bi = 0 for all i. The result
follows.
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Example. The previous result does not hold if S is linearly dependent. For instance,
consider the set S = {(1, 1), (2, 2)} ⊂ R. Then

(3, 3) = (1, 1) + (2, 2) = 2(1, 1) +
1

2
(2, 2) = 3(1, 1) + 0(2, 2) = etc.

Exercise. Prove that the converse of the previous proposition holds: if each element
of SpanS can be expressed uniquely as a linear combination of elements of S, then S
is linearly independent.
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