Subspaces and spanning sets II

In today's lecture, we start by proving a simple (but useful) results about spanning sets. We then present several examples of subspaces and spanning sets.

Recall the definitions presented last time:

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a linear combination of vectors in S if there exist $u_1, \ldots, u_n \in S$ and $a_1, \ldots, a_n \in F$ (for some n) such that

$$v = \sum_{i=1}^{n} a_i u_i = a_1 u_1 + \dots + a_n u_n.$$

Definition. Let S be a nonempty subset of V. The span of S, denoted Span(S), is the set of all linear combinations of elements of S. By convention $Span \emptyset := \{0\}$, and we say that 0 is the empty linear combination.

Lemma. Let V be a vector space over F, let $S \subseteq V$, and let $v \in V$. Then

$$\operatorname{Span}(S \cup \{v\}) = \operatorname{Span}(S) \Leftrightarrow v \in \operatorname{Span}(S).$$

Proof. (\Rightarrow) If Span $(S \cup \{v\}) = \text{Span}(S)$, then since $v \in \text{Span}(S \cup \{v\})$, it follows that $v \in \text{Span}(S)$.

(\Leftarrow) Suppose that $v \in \text{Span}(S)$. We wish to show that $\text{Span}(S \cup \{v\}) = \text{Span}(S)$. Suppose that $w \in \text{Span}(S \cup \{v\})$. Then we can write

$$w = a_1 s_1 + \dots + a_k s_k + bv$$

for some $s_1, \ldots, s_k \in S$ and some $a_1, \ldots, a_k, b \in F$. We are given that $v \in \text{Span}(S)$. Hence,

$$v = c_1 t_1 + \dots + c_{\ell} t_{\ell}$$

for some $t_1, \ldots, t_\ell \in S$ and some $c_1, \ldots, c_\ell \in F$. Substituting into the previous equation, we see

$$w = a_1 s_1 + \dots + a_k s_k + b(c_1 t_1 + \dots + c_\ell t_\ell)$$

= $a_1 s_1 + \dots + a_k s_k + b c_1 t_1 + \dots + b c_\ell t_\ell$
 $\in \text{Span}(S).$

We have shown that $\operatorname{Span}(S \cup \{v\}) \subseteq \operatorname{Span}(S)$. The opposite inclusion also holds since one is easily sees that

$$S \subseteq S \cup \{v\} \Rightarrow \operatorname{Span}(S) \subseteq \operatorname{Span}(S \cup \{v\}).$$

We now move on to examples of subspaces and spanning sets.

Example. Recall from the reading that $P_k(F)$ is the vector space of polynomials of degree at most k with coefficients in F. Another, more standard, notation for this vector space is $F[x]_{\leq k}$. We have that

$$P_k(F) = F[x]_{\leq 2} = \text{Span}\{1, x, \dots, x^k\}.$$

Now let

$$S = \{x^2 + 3x - 2, 2x^2 + 5x - 3\} \subset \mathbb{R}[x]_{\leq 2}.$$

Is
$$-x^2 - 4x + 4 \in \text{Span}(S)$$
?

Solution. We are looking for $a, b \in \mathbb{R}$ such that

$$-x^2 - 4x + 4 = a(x^2 + 3x - 2) + b(2x^2 + 5x - 3),$$

in other words, such that

$$-x^{2} - 4x + 4 = (a + 2b)x^{2} + (3a + 5b)x + (-2a - 3b).$$

So we need to see if the following system of linear equations has a solution:

$$a + 2b = -1$$
$$3a + 5b = -4$$
$$-2a - 3b = 4.$$

Applying Gaussian elimination, we find

$$\begin{pmatrix} 1 & 2 & -1 \\ 3 & 5 & -4 \\ -2 & -3 & 4 \end{pmatrix} \quad \rightsquigarrow \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We see that the system is inconsistent, i.e., it has no solutions. So $-x^2 - 4x + 4 \notin \text{Span}(S)$.

Definition. Let S be any set, and consider the function space $F^S := \{f : S \to F\}$. For each $s \in S$, define the *characteristic function* $\chi_s \in F^S$ for s by

$$\chi_s \colon S \to F$$

$$t \mapsto \begin{cases} 1 & \text{if } t = s \\ 0 & \text{otherwise.} \end{cases}$$

Example. Let $S = \{1, 2, 3\}$, and consider the function $f: S \to \mathbb{R}$ given by f(1) = -1, $f(2) = \pi$, and f(3) = 16. Then we can write f as a linear combination of characteristic functions:

$$f = -\chi_1 + \pi \chi_2 + 16\chi_3$$
.

For instance,

$$f(2) = (-\chi_1 + \pi \chi_2 + 16\chi_3)(2)$$

= $-\chi_1(2) + \pi \chi_2(2) + 16\chi_3(2)$
= $-0 + \pi \cdot 1 + 16 \cdot 0 = \pi$.

In this way, if S is finite, then $\{\chi_s : s \in S\}$ generates F^S . On the other hand, if S is infinite, things are more complicated. For instance, consider the case where $S = \mathbb{N} = \{0, 1, 2, \ldots\}$. Then $\mathbb{R}^{\mathbb{N}}$ is the vector space of infinite real sequences. For instance, the sequence $1, 1/2, 1/4, /8, \ldots$ is the function $f \in \mathbb{R}^{\mathbb{N}}$ given by $f(i) := 1/2^i$. If we try to write f as a linear combination of characteristic functions, we would have

$$f = \chi_0 + \frac{1}{2}\chi_1 + \frac{1}{4}\chi_2 + \frac{1}{8}\chi_3 + \cdots,$$

an infinite sum. However, by definition, the span of a set is the collection of all *finite* linear combinations of elements in the set. Infinite linear combinations like those above involve questions of convergence, and we are not concerned with those issues at the moment.

Definition. A linear equation of the form $a_1x_1 + \cdots + a_nx_n = 0$ where $a_i \in F$ is called *homogeneous*.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^n .

Proof. First note that the zero vector satisfies any homogeneous linear equation. So the solution set is nonempty. Next, let $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ be solutions to a system of homogeneous linear equations, and let $a_1x_1 + \cdots + a_nx_n = 0$ be any equation in the system. Thus,

$$a_1u_1 + \dots + a_nu_n = 0$$

$$a_1v_1 + \dots + a_nv_n = 0.$$

Now let $\lambda \in F$ and consider

$$u + \lambda v = (u_1 + \lambda v_1, \dots, u_n + \lambda v_n).$$

The following calculation shows that $u + \lambda v$ is also a solution to the equation

$$a_1(u_1 + \lambda v_1) + \dots + a_n(u_n + \lambda v_n) = a_1u_1 + \dots + a_nu_n + \lambda(a_1v_1 + \dots + a_nv_n)$$

= $0 + \lambda \cdot 0 = 0$.

Terminology. Since the solution set to a system of homogeneous linear equations is a subspace, we usually refer to the solution set as the *solution space* for the system.

Example. Writing a solution to a system of homogeneous linear equations in vector form yields a set of generators for the solution space. For example, consider the system

$$x + z + w = 0$$

$$2x + y - w = 0$$

$$3x + y + z = 0.$$

We solve the system by performing Gaussian elimination (intermediary steps omitted):

$$\left(\begin{array}{ccc|c}
1 & 0 & 1 & 1 & 0 \\
2 & 1 & 0 & -1 & 0 \\
3 & 1 & 1 & 0 & 0
\end{array}\right) \quad \rightsquigarrow \quad \left(\begin{array}{ccc|c}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & -2 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right).$$

Converting back into equations and solving for the leading (pivot) variables gives

$$x = -z - w$$
$$y = 2z + 3w.$$

So the set of solutions (in parametric form) is

$$\{(-z-w, 2z+3w, z, w): z, w \in \mathbb{R}\},\$$

or, written in vector form,

$$\left\{z\begin{pmatrix} -1\\2\\1\\0\end{pmatrix} + w\begin{pmatrix} -1\\3\\0\\1\end{pmatrix} : z, w \in \mathbb{R}\right\} = \operatorname{Span}\left\{\begin{pmatrix} -1\\2\\1\\0\end{pmatrix}, \begin{pmatrix} -1\\3\\0\\1\end{pmatrix}\right\}.$$

The solution space is generated by two vectors.