
Math 201 lecture for Friday, Week 3

Bases

Definition. A subset B ⊂ V is a basis if it is linearly independent and spans V .
An ordered basis is a basis whose elements have been listed as a sequence: B =
〈b1, b2, . . . 〉.1

Warning: Our book defines a basis to be what we are calling an ordered basis. That’s
not standard, and there are problems with that idea when talking about infinite-
dimensional vector spaces, which we will not go into here. We will, however, use the
book’s notation of “〈” and “〉” to denote an ordered basis. Thus, for us, the word
basis will mean “unordered basis”, and we will try to be careful to say “ordered basis”
when relevant (but will sometimes forget).

Examples.

(a) The standard ordered basis for F n is 〈e1, . . . , en〉 where the i-th standard basis
vector is ei = (0, . . . , 0, 1, 0, . . . , 0), the vector with i-th component 1 and all
other components 0. For instance, the standard ordered basis for F 3 is

〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉.

Here is another possible ordered basis for F 3:

〈(1, 0, 0), (0, 1, 0), (1, 1, 1)〉.

Exercise: check that the above vectors are linearly independent and span F 3.

(b) One ordered basis for the vector space P3(F ) = F [x]≤3 of polynomials of degree
most three is

〈1, x, x2, x3〉.

(c) One ordered basis for, M2×3(F ), the vector space of 2×3 matrices over a field F ,
is

M1 =

(
1 0 0
0 0 0

)
, M2 =

(
0 1 0
0 0 0

)
, M3 =

(
0 0 1
0 0 0

)
,

M4 =

(
0 0 0
1 0 0

)
, M5 =

(
0 0 0
0 1 0

)
, M6 =

(
0 0 0
0 0 1

)
.

1Every vector space has a basis—we will prove this in the finite-dimensional case. An infinite-
dimensional vector space may not have a countable basis, i.e., one that can be indexed by the natural
numbers. There is a link to a supplemental article at our course homepage, if you would like to
know more.
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These matrices span M2×3(F ):(
a b c
d e f

)
= aM1 + bM2 + cM3 + dM4 + eM5 + fM6.

To see they are linearly independent, suppose the above sum is 0, i.e., the zero
matrix. Then we must have a = b = c = d = e = f = 0.

Last time, we showed the following proposition:

Proposition 1 from previous lecture. Let S ⊆ V . Then S is linearly dependent if
and only if there exists v ∈ S such that v is a linear combination of vectors in S \{v},
i.e., if and only if v ∈ Span(S \ {v}).

We use this result to prove the following:

Proposition 1. Any finite subset S of V has a linearly independent subset with the
same span. In other words, if S is a finite set, then there is a subset of S that is a
basis for Span(S).

Proof. If S is linearly independent, we are done. If not, then by Proposition 1 from
the previous lecture, there exists v ∈ S such that v ∈ Span(S \ {v}). It follows
that Span(S) = Span(S \{v}). If S \{v} is linearly independent, we are done. If not,
repeat the above step. The process will end eventually since S is finite. We are OK
even if the process ends at the empty set since the empty set is linearly independent.
(For instance, if S = {0}, our process would end at ∅.)

In the above, we create a basis for Span(S) by discarding elements of S. Another
possibility is to start at the empty set and start adding elements S that are linearly
independent of those we have so far. This follows from:

Proposition 2. If T ⊂ V is linearly independent and v ∈ V \ T , then T ∪ {v} is
linearly dependent if and only if v ∈ Span(T ).

Proof. (⇒) Suppose that v ∈ V \ {v} and that T ∪ {v} is linearly dependent. Then
we may write

av + a1u1 + · · ·+ anun = 0 (?)

for some a, a1, . . . , an ∈ F , not all zero, and distinct ui ∈ T . We can always assume
that v appears in this expression by taking a = 0, if necessary. But, in fact, a 6= 0
since otherwise (?) would be a linear relation among distinct elements of T . Since T
is linearly independent, this would mean that all the ai = 0, in addition to a = 0.
However, we know that at least one of these scalars in nonzero.
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Thus, it must be that a 6= 0. We can then solve for v in (?):

v = −ai
a
u1 − · · · −

an
a
un ∈ Span(T ).

(⇐) Suppose that v ∈ Span(T ). Then

v = a1u1 + · · ·+ anun

for some ai ∈ F and ui ∈ T . Since v /∈ T , it follows that

a1u1 + · · ·+ anun + (−1) · v = 0

is a nontrivial relation among elements of T∪{v}. So T∪{v} is linearly dependent.

Alternate proof of Proposition 1. We are starting with a finite set S and looking for
a subset T of S that is linearly independent and generates V = Span(S). If S = ∅ or
S = {0}, we take T = ∅ and are done. If not, there exists a nonzero element u1 ∈ S,
and we set T = {u1}. If Span(T ) = Span(S), we are done. If not, then there
exists u2 ∈ S such that u2 6∈ Span(T ). We then append u2 to T . So now T = {u1, u2},
and by Proposition 2, the set T is linearly independent. If Span(T ) 6= Span(S), repeat
to find u3 ∈ S linearly independent of u1 and u2. Etc. Since S is finite, the process
eventually stops.

Example. Let V = (Z/3Z)3, a vector space over Z/3Z.

How many elements are in V ? A point in V has the form (x1, x2, x3), and there are 3
choices for each xi. Hence, the number of elements in V is |V | = 33 = 27.

As an exercise, check that the following is a subspace of V :

W = {(x1, x2, x3) ∈ V : x1 + x2 + x3 = 0} .

How many elements are in W? We have,

W = {(−x2 − x3, x2, x3) : x2, x3 ∈ Z/3Z} .

As we let x2 and x3 vary, we get 9 elements:

{(0, 0, 0), (2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 1, 1), (0, 2, 1), (1, 0, 2), (0, 1, 2), (2, 2, 2)}.

Let’s try to find a linearly independent generating set for W . Start with v1 := (2, 1, 0).
The span of {v1} has three elements:

0 · (2, 1, 0) = (0, 0, 0)

1 · (2, 1, 0) = (2, 1, 0)

2 · (2, 1, 0) = (1, 2, 0).
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Next, note that v2 = (2, 0, 1) is not in Span({v1}). By Proposition 2, we see that S :=
{v1, v2} is linearly independent. We claim Span(S) = W . First, since v1, v2 ∈ W ,
we see Span(S) ⊆ W . Next, by Theorem 1, every element of Span(S) has a unique
expression of the form

a1v1 + a2v2

where a1, a2 ∈ Z/3Z. Hence, | Span(S)| = 32 = 9. Since Span(S) ⊆ W and | Span(S)| =
|W | = 9, it follows that Span(S) = W .

Proposition 3. If B is a basis for V , then every element of V can be expressed
uniquely as a linear combination of elements of B.

Proof. Since B is linearly independent, we’ve already seen that every element in
Span(B) can be written uniquely as a linear combination of elements of B. Since B
is a basis, Span(B) = V .

Definition. Let B = 〈v1, . . . , vn〉 be an ordered basis for V . Given v ∈ V , there are
unique a1, . . . , an ∈ F such that

v = a1v1 + · · ·+ anvn.

The coordinates of v with respect to the basis B are the components of the vec-
tor (a1, . . . , an) ∈ F n. We write

[v]B = (a1, . . . , an).

Examples.

(a) Let v = (x, y, z) ∈ F 3. The coordinates of v with respect to the standard ordered
basis B = 〈e1, e2, e3〉 are (x, y, z) since

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe1 + ye2 + ze3.

Now consider B′ = 〈(1, 0, 0), (1, 1, 0), (1, 1, 1)〉. Then the coordinates of v with
respect to B′ are (x− y, y − z, z) since

(x, y, z) = (x− y)(1, 0, 0) + (y − z)(1, 1, 0) + z(1, 1, 1).

(b) Recall the ordered basis 〈M1, . . . ,M6〉 for M2×3(F ) defined earlier. Then the
coordinates of the matrix (

a b c
d e f

)
are (a, b, c, d, e, f) ∈ F 6.
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