Math 201 lecture for Friday, Week 3

Bases

Definition. A subset $B \subset V$ is a *basis* if it is linearly independent and spans V. An *ordered basis* is a basis whose elements have been listed as a sequence: $B = \langle b_1, b_2, \ldots \rangle$.¹

Warning: Our book defines a *basis* to be what we are calling an *ordered basis*. That's not standard, and there are problems with that idea when talking about infinitedimensional vector spaces, which we will not go into here. We will, however, use the book's notation of " \langle " and " \rangle " to denote an ordered basis. Thus, for us, the word *basis* will mean "unordered basis", and we will try to be careful to say "ordered basis" when relevant (but will sometimes forget).

Examples.

(a) The standard ordered basis for F^n is $\langle e_1, \ldots, e_n \rangle$ where the *i*-th standard basis vector is $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$, the vector with *i*-th component 1 and all other components 0. For instance, the standard ordered basis for F^3 is

$$\langle (1,0,0), (0,1,0), (0,0,1) \rangle.$$

Here is another possible ordered basis for F^3 :

$$\langle (1,0,0), (0,1,0), (1,1,1) \rangle.$$

Exercise: check that the above vectors are linearly independent and span F^3 .

(b) One ordered basis for the vector space $P_3(F) = F[x]_{\leq 3}$ of polynomials of degree most three is

$$\langle 1, x, x^2, x^3 \rangle.$$

(c) One ordered basis for, $M_{2\times 3}(F)$, the vector space of 2×3 matrices over a field F, is

$$M_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, M_{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, M_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$
$$M_{4} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, M_{5} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, M_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

¹Every vector space has a basis—we will prove this in the finite-dimensional case. An infinitedimensional vector space may not have a countable basis, i.e., one that can be indexed by the natural numbers. There is a link to a supplemental article at our course homepage, if you would like to know more.

These matrices span $M_{2\times 3}(F)$:

$$\left(\begin{array}{ccc}a&b&c\\d&e&f\end{array}\right) = aM_1 + bM_2 + cM_3 + dM_4 + eM_5 + fM_6$$

To see they are linearly independent, suppose the above sum is 0, i.e., the zero matrix. Then we must have a = b = c = d = e = f = 0.

Last time, we showed the following proposition:

Proposition 1 from previous lecture. Let $S \subseteq V$. Then S is linearly dependent if and only if there exists $v \in S$ such that v is a linear combination of vectors in $S \setminus \{v\}$, i.e., if and only if $v \in \text{Span}(S \setminus \{v\})$.

We use this result to prove the following:

Proposition 1. Any finite subset S of V has a linearly independent subset with the same span. In other words, if S is a finite set, then there is a subset of S that is a basis for Span(S).

Proof. If S is linearly independent, we are done. If not, then by Proposition 1 from the previous lecture, there exists $v \in S$ such that $v \in \text{Span}(S \setminus \{v\})$. It follows that $\text{Span}(S) = \text{Span}(S \setminus \{v\})$. If $S \setminus \{v\}$ is linearly independent, we are done. If not, repeat the above step. The process will end eventually since S is finite. We are OK even if the process ends at the empty set since the empty set is linearly independent. (For instance, if $S = \{0\}$, our process would end at \emptyset .)

In the above, we create a basis for Span(S) by discarding elements of S. Another possibility is to start at the empty set and start adding elements S that are linearly independent of those we have so far. This follows from:

Proposition 2. If $T \subset V$ is linearly independent and $v \in V \setminus T$, then $T \cup \{v\}$ is linearly dependent if and only if $v \in \text{Span}(T)$.

Proof. (\Rightarrow) Suppose that $v \in V \setminus \{v\}$ and that $T \cup \{v\}$ is linearly dependent. Then we may write

$$av + a_1u_1 + \dots + a_nu_n = 0 \qquad (\star)$$

for some $a, a_1, \ldots, a_n \in F$, not all zero, and distinct $u_i \in T$. We can always assume that v appears in this expression by taking a = 0, if necessary. But, in fact, $a \neq 0$ since otherwise (\star) would be a linear relation among distinct elements of T. Since Tis linearly independent, this would mean that all the $a_i = 0$, in addition to a = 0. However, we know that at least one of these scalars in nonzero. Thus, it must be that $a \neq 0$. We can then solve for v in (\star) :

$$v = -\frac{a_i}{a}u_1 - \dots - \frac{a_n}{a}u_n \in \operatorname{Span}(T).$$

(\Leftarrow) Suppose that $v \in \text{Span}(T)$. Then

$$v = a_1 u_1 + \dots + a_n u_n$$

for some $a_i \in F$ and $u_i \in T$. Since $v \notin T$, it follows that

$$a_1u_1 + \dots + a_nu_n + (-1) \cdot v = 0$$

is a nontrivial relation among elements of $T \cup \{v\}$. So $T \cup \{v\}$ is linearly dependent. \Box

Alternate proof of Proposition 1. We are starting with a finite set S and looking for a subset T of S that is linearly independent and generates V = Span(S). If $S = \emptyset$ or $S = \{0\}$, we take $T = \emptyset$ and are done. If not, there exists a nonzero element $u_1 \in S$, and we set $T = \{u_1\}$. If Span(T) = Span(S), we are done. If not, then there exists $u_2 \in S$ such that $u_2 \notin \text{Span}(T)$. We then append u_2 to T. So now $T = \{u_1, u_2\}$, and by Proposition 2, the set T is linearly independent. If $\text{Span}(T) \neq \text{Span}(S)$, repeat to find $u_3 \in S$ linearly independent of u_1 and u_2 . Etc. Since S is finite, the process eventually stops.

Example. Let $V = (\mathbb{Z}/3\mathbb{Z})^3$, a vector space over $\mathbb{Z}/3\mathbb{Z}$.

How many elements are in V? A point in V has the form (x_1, x_2, x_3) , and there are 3 choices for each x_i . Hence, the number of elements in V is $|V| = 3^3 = 27$.

As an exercise, check that the following is a subspace of V:

$$W = \{(x_1, x_2, x_3) \in V : x_1 + x_2 + x_3 = 0\}.$$

How many elements are in W? We have,

$$W = \{ (-x_2 - x_3, x_2, x_3) : x_2, x_3 \in \mathbb{Z}/3\mathbb{Z} \}.$$

As we let x_2 and x_3 vary, we get 9 elements:

$$\{(0,0,0), (2,1,0), (1,2,0), (2,0,1), (1,1,1), (0,2,1), (1,0,2), (0,1,2), (2,2,2)\}.$$

Let's try to find a linearly independent generating set for W. Start with $v_1 := (2, 1, 0)$. The span of $\{v_1\}$ has three elements:

$$0 \cdot (2, 1, 0) = (0, 0, 0)$$

$$1 \cdot (2, 1, 0) = (2, 1, 0)$$

$$2 \cdot (2, 1, 0) = (1, 2, 0).$$

Next, note that $v_2 = (2, 0, 1)$ is not in Span($\{v_1\}$). By Proposition 2, we see that $S := \{v_1, v_2\}$ is linearly independent. We claim Span(S) = W. First, since $v_1, v_2 \in W$, we see Span(S) $\subseteq W$. Next, by Theorem 1, every element of Span(S) has a unique expression of the form

 $a_1v_1 + a_2v_2$

where $a_1, a_2 \in \mathbb{Z}/3\mathbb{Z}$. Hence, $|\operatorname{Span}(S)| = 3^2 = 9$. Since $\operatorname{Span}(S) \subseteq W$ and $|\operatorname{Span}(S)| = |W| = 9$, it follows that $\operatorname{Span}(S) = W$.

Proposition 3. If B is a basis for V, then every element of V can be expressed uniquely as a linear combination of elements of B.

Proof. Since B is linearly independent, we've already seen that every element in Span(B) can be written uniquely as a linear combination of elements of B. Since B is a basis, Span(B) = V.

Definition. Let $B = \langle v_1, \ldots, v_n \rangle$ be an ordered basis for V. Given $v \in V$, there are unique $a_1, \ldots, a_n \in F$ such that

$$v = a_1 v_1 + \dots + a_n v_n.$$

The coordinates of v with respect to the basis B are the components of the vector $(a_1, \ldots, a_n) \in F^n$. We write

$$[v]_B = (a_1, \ldots, a_n).$$

Examples.

(a) Let $v = (x, y, z) \in F^3$. The coordinates of v with respect to the standard ordered basis $B = \langle e_1, e_2, e_3 \rangle$ are (x, y, z) since

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe_1 + ye_2 + ze_3.$$

Now consider $B' = \langle (1,0,0), (1,1,0), (1,1,1) \rangle$. Then the coordinates of v with respect to B' are (x - y, y - z, z) since

$$(x, y, z) = (x - y)(1, 0, 0) + (y - z)(1, 1, 0) + z(1, 1, 1).$$

(b) Recall the ordered basis $\langle M_1, \ldots, M_6 \rangle$ for $M_{2 \times 3}(F)$ defined earlier. Then the coordinates of the matrix

(a	b	c	
	d	e	f)	

are $(a, b, c, d, e, f) \in F^6$.