Math 201 lecture for Wednesday, Week 2

Vector spaces
Let F be a field, e.g., Q, R, C, Z/2Z (but not Z).

Definition. A wvector space over F' is a set V with two operations

vector addition: +:VxV =V
(v, w) —v+w

scalar multiplication: L FxV sV

(a,v) = av

such that the following hold for all x,y,2 € V and a,b € F*

1. x +y =y + x (commutativity of addition).

2. (x4+y)+ 2= (r+vy)+ =z (associativity of addition).

3. There exists 0 € V' such that 0 +w = w for all w € V.

4. There exists —z € V such that = + (—z) = 0.

5. For 1€ F, we have 1 -x = x.

6. (ab)z = a(bzr) (associativity of scalar multiplication).

7. a(x +y) = ax + ay (distributivity).

8. (a+b)xr = ax + bx (distributivity).

Remark. Rules 1-4 provide the additive structure and say that under addition V'

forms an abelian group. Rules 5-8 deal with the second operation, scalar multiplica-
tion. Together, they provide a linear structure for the set V.

Exercise. Let v be an element of a vector space. Prove that (—1)v = —wv.



Example. Let F" = F x --- x F ={(ay,...,a,) :a; € F fori=1,... ,n} with the
—_—

n times

operations

(al,...,an)—l—(bl,...,bn) = ((Z1+b1,...,an+bn)

clay, ... ,a,) = (cay,...,cay)
for all (aq,...,an), (b1,...,b,) € F" and ¢ € F. Then F™ is a vector space.

Special cases:

(a) F =R and n = 2. This gives R? with its usual linear structure. Addition is
given by the “parallelogram rule” and scalar multiplication scales length:

Here are examples of the vector space axioms in the special case V = R?:

1. commutativity of +:
2. associativity of +:

((6,3) + (=2,4)) +(0,2) =

3. zero vector:

(Oa O) + (67 3) = (67 3);

4. additive inverses:

(67 3) + (_67 _3) = (07 0);

5. scaling by 1:
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6. associativity of scalar multiplication:
(3-2)(6,3) = 6(6,3) = (36, 18) = 3(12,6) = 3(2(6,3))

7. distributivity:

and
3(6,3) +3(—2,4) = (18,9) + (—6,12) = (12, 21);

8. distributivity:
(3+2)(6,3) =5(6,3) = (30,15)

and
3(6,3) +2(6,3) = (18,9) + (12,6) = (30, 15).

(b) F =17/3Z and n = 4. For example, (0,1,0,0),(1,1,0,2) € (Z/3Z)*, and
(0,1,0,0) +2(1,1,0,2) = (0,1,0,0) + (2,2,0,1) = (2,0,0, 1).
(c¢) The field F is a vector space over itself (this is the case of F"™ with n = 1).
More examples of vector spaces.

(i) The field C is a vector space over R. For all a,b,c,d,t € R, we have

(a+bi)+ (c+di)=(a+c)+ (b+d)i
t(a + bi) = ta + (tb)i.

(ii) The field R is a vector space over Q.
(iii) The set of m x n matrices with entries in F:
ai; ... A1p

Mysn = : a;; € F forall ¢,

ami1 --- Qmnp

has a standard vector space structure. Given A € M,,.,, denote the entry in
its i-the row and j-th column by A;;. Define the vector space operations on
M, «n as follows:

scalar multiplication: (cA);; := cA;; for all A € M,,4,, and c € F.
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For example, let F'=Q, m =2, and n = 3. We have
5 103+502—1_2101
-1 2 0 10 4 ~\3 4 20 )
Calling this last matrix A, we have A, =2, A; 5 =10,..., Ay 3 = 20.

(iv) (Important.) If S is any set, let F*° be the set of functions f: S — F. This
function space is naturally an F-vector space (i.e., a vector space with scalar
field F) with the following operations: for f,g € F° and t € F define f + ¢
and tf by

addition: (f+9)(s) = f(s)+g(s)

scalar multiplication: (tf)(s) :==t(f(s)).

Special cases:

e If S = {1,...,n}, then F¥ is essentially F™. For example, we can think
of (3,2) € R as the function

f: {2} —=>R
1—3
2= 2.
In general, (ai,...,a,) € F™ can be thought of as the function
f+{1...,n}=>F
1 — a;.

e Similarly, if S = {(i,j):i=1,...,mand j=1,...,n}, then F¥ may
be identified with M,,,, with f € F° corresponding to the matrix A
where A;; = f(i,7).

o If S={1,2,3,...}, then F° is the vector space of infinite sequences in F.
For example, the sequence 1,1/2,1/4,1/8,... in Q can be identified with
the function f: S — Q defined by f(i) = 1/2".

Definition. A subset W C V of a vector space V is a subspace of V is it is a vector
space with the operations of addition and scalar multiplication inherited from V.

We will talk about subspaces in the next class.

4



