
Math 201 lecture for Wednesday, Week 2

Vector spaces

Let F be a field, e.g., Q, R, C, Z/2Z (but not Z).

Definition. A vector space over F is a set V with two operations

vector addition: +: V × V → V

(v, w) 7→ v + w

scalar multiplication: +: F × V → V

(a, v) 7→ av

such that the following hold for all x, y, z ∈ V and a, b ∈ F :

1. x + y = y + x (commutativity of addition).

2. (x + y) + z = (x + y) + z (associativity of addition).

3. There exists 0 ∈ V such that 0 + w = w for all w ∈ V .

4. There exists −x ∈ V such that x + (−x) = 0.

5. For 1 ∈ F , we have 1 · x = x.

6. (ab)x = a(bx) (associativity of scalar multiplication).

7. a(x + y) = ax + ay (distributivity).

8. (a + b)x = ax + bx (distributivity).

Remark. Rules 1–4 provide the additive structure and say that under addition V
forms an abelian group. Rules 5–8 deal with the second operation, scalar multiplica-
tion. Together, they provide a linear structure for the set V .

Exercise. Let v be an element of a vector space. Prove that (−1)v = −v.
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Example. Let F n = F × · · · × F︸ ︷︷ ︸
n times

= {(a1, . . . , an) : ai ∈ F for i = 1, . . . , n} with the

operations

(a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn)

c(a1, . . . , an) := (ca1, . . . , can)

for all (a1, . . . , an), (b1, . . . , bn) ∈ F n and c ∈ F . Then F n is a vector space.

Special cases:

(a) F = R and n = 2. This gives R2 with its usual linear structure. Addition is
given by the “parallelogram rule” and scalar multiplication scales length:

u

v

u + v

u

3u

.

Here are examples of the vector space axioms in the special case V = R2:

1. commutativity of +:

(6, 3) + (−2, 4) = (4, 7) = (−2, 4) + (6, 3);

2. associativity of +:

((6, 3) + (−2, 4)) + (0, 2) = (4, 7) + (0, 2)

= (4, 9)

= (6, 3) + (−2, 6)

= (6, 3) + ((−2, 4) + (0, 2));

3. zero vector:
(0, 0) + (6, 3) = (6, 3);

4. additive inverses:
(6, 3) + (−6,−3) = (0, 0);

5. scaling by 1:
1 · (6, 3) = (1 · 6, 1 · 3) = (6, 3);
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6. associativity of scalar multiplication:

(3 · 2)(6, 3) = 6(6, 3) = (36, 18) = 3(12, 6) = 3 (2 (6, 3)) ;

7. distributivity:
3((6, 3) + (−2, 4)) = 3(4, 7) = (12, 21)

and
3(6, 3) + 3(−2, 4) = (18, 9) + (−6, 12) = (12, 21);

8. distributivity:
(3 + 2)(6, 3) = 5(6, 3) = (30, 15)

and
3(6, 3) + 2(6, 3) = (18, 9) + (12, 6) = (30, 15).

(b) F = Z/3Z and n = 4. For example, (0, 1, 0, 0), (1, 1, 0, 2) ∈ (Z/3Z)4, and

(0, 1, 0, 0) + 2(1, 1, 0, 2) = (0, 1, 0, 0) + (2, 2, 0, 1) = (2, 0, 0, 1).

(c) The field F is a vector space over itself (this is the case of F n with n = 1).

More examples of vector spaces.

(i) The field C is a vector space over R. For all a, b, c, d, t ∈ R, we have

(a + bi) + (c + di) = (a + c) + (b + d)i

t(a + bi) = ta + (tb)i.

(ii) The field R is a vector space over Q.

(iii) The set of m× n matrices with entries in F :

Mm×n :=


 a11 . . . a1n

...
am1 . . . amn

 : aij ∈ F for all i, j

 .

has a standard vector space structure. Given A ∈ Mm×n, denote the entry in
its i-the row and j-th column by Aij. Define the vector space operations on
Mm×n as follows:

addition: (A + B)ij := Aij + Bij for all A,B ∈Mm×n;

scalar multiplication: (cA)ij := cAij for all A ∈Mm×n and c ∈ F .
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For example, let F = Q, m = 2, and n = 3. We have

2

(
1 0 3
−1 2 0

)
+ 5

(
0 2 −1
1 0 4

)
=

(
2 10 1
3 4 20

)
.

Calling this last matrix A, we have A1,1 = 2, A1,2 = 10,. . . , A2,3 = 20.

(iv) (Important.) If S is any set, let F S be the set of functions f : S → F . This
function space is naturally an F -vector space (i.e., a vector space with scalar
field F ) with the following operations: for f, g ∈ F S and t ∈ F define f + g
and tf by

addition: (f + g)(s) := f(s) + g(s)

scalar multiplication: (tf)(s) := t(f(s)).

Special cases:

• If S = {1, . . . , n}, then F S is essentially F n. For example, we can think
of (3, 2) ∈ R as the function

f : {1, 2} → R
1 7→ 3

2 7→ 2.

In general, (a1, . . . , an) ∈ F n can be thought of as the function

f : {1, . . . , n} → F

i 7→ ai.

• Similarly, if S = {(i, j) : i = 1, . . . ,m and j = 1, . . . , n}, then F S may
be identified with Mm×n with f ∈ F S corresponding to the matrix A
where Aij = f(i, j).

• If S = {1, 2, 3, . . . }, then F S is the vector space of infinite sequences in F .
For example, the sequence 1, 1/2, 1/4, 1/8, . . . in Q can be identified with
the function f : S → Q defined by f(i) = 1/2i.

Definition. A subset W ⊆ V of a vector space V is a subspace of V is it is a vector
space with the operations of addition and scalar multiplication inherited from V .

We will talk about subspaces in the next class.
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