Math 201 lecture for Wednesday, Week 2

Vector spaces

Let F be a field, e.g., \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/2\mathbb{Z}$ (but not \mathbb{Z}).

Definition. A vector space over F is a set V with two operations

vector addition:
$$+: V \times V \to V$$

 $(v, w) \mapsto v + w$

scalar multiplication:	$+\colon F\times V\to V$
	$(a,v)\mapsto av$

such that the following hold for all $x, y, z \in V$ and $a, b \in F$:

- 1. x + y = y + x (commutativity of addition).
- 2. (x+y) + z = (x+y) + z (associativity of addition).
- 3. There exists $0 \in V$ such that 0 + w = w for all $w \in V$.
- 4. There exists $-x \in V$ such that x + (-x) = 0.
- 5. For $1 \in F$, we have $1 \cdot x = x$.
- 6. (ab)x = a(bx) (associativity of scalar multiplication).
- 7. a(x+y) = ax + ay (distributivity).
- 8. (a+b)x = ax + bx (distributivity).

Remark. Rules 1–4 provide the *additive structure* and say that under addition V forms an *abelian group*. Rules 5–8 deal with the second operation, scalar multiplication. Together, they provide a *linear structure* for the set V.

Exercise. Let v be an element of a vector space. Prove that (-1)v = -v.

Example. Let $F^n = \underbrace{F \times \cdots \times F}_{n \text{ times}} = \{(a_1, \dots, a_n) : a_i \in F \text{ for } i = 1, \dots, n\}$ with the

operations

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) := (a_1 + b_1, \dots, a_n + b_n)$$

 $c(a_1, \dots, a_n) := (ca_1, \dots, ca_n)$

for all $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in F^n$ and $c \in F$. Then F^n is a vector space.

Special cases:

(a) $F = \mathbb{R}$ and n = 2. This gives \mathbb{R}^2 with its usual linear structure. Addition is given by the "parallelogram rule" and scalar multiplication scales length:

Here are examples of the vector space axioms in the special case $V = \mathbb{R}^2$:

1. commutativity of +:

$$(6,3) + (-2,4) = (4,7) = (-2,4) + (6,3);$$

2. associativity of +:

$$((6,3) + (-2,4)) + (0,2) = (4,7) + (0,2)$$

= (4,9)
= (6,3) + (-2,6)
= (6,3) + ((-2,4) + (0,2));

3. zero vector:

$$(0,0) + (6,3) = (6,3);$$

4. additive inverses:

$$(6,3) + (-6,-3) = (0,0);$$

5. scaling by 1:

$$1 \cdot (6,3) = (1 \cdot 6, 1 \cdot 3) = (6,3)$$

6. associativity of scalar multiplication:

$$(3 \cdot 2)(6,3) = 6(6,3) = (36,18) = 3(12,6) = 3(2(6,3));$$

7. distributivity:

$$3((6,3) + (-2,4)) = 3(4,7) = (12,21)$$

and

$$3(6,3) + 3(-2,4) = (18,9) + (-6,12) = (12,21);$$

8. distributivity:

$$(3+2)(6,3) = 5(6,3) = (30,15)$$

and

$$3(6,3) + 2(6,3) = (18,9) + (12,6) = (30,15).$$

(b) $F = \mathbb{Z}/3\mathbb{Z}$ and n = 4. For example, $(0, 1, 0, 0), (1, 1, 0, 2) \in (\mathbb{Z}/3\mathbb{Z})^4$, and

$$(0,1,0,0) + 2(1,1,0,2) = (0,1,0,0) + (2,2,0,1) = (2,0,0,1).$$

(c) The field F is a vector space over itself (this is the case of F^n with n = 1).

More examples of vector spaces.

(i) The field \mathbb{C} is a vector space over \mathbb{R} . For all $a, b, c, d, t \in \mathbb{R}$, we have

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

 $t(a+bi) = ta + (tb)i.$

- (ii) The field \mathbb{R} is a vector space over \mathbb{Q} .
- (iii) The set of $m \times n$ matrices with entries in F:

$$M_{m \times n} := \left\{ \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ & \vdots & \\ a_{m1} & \dots & a_{mn} \end{array} \right) : a_{ij} \in F \text{ for all } i, j \right\}.$$

has a standard vector space structure. Given $A \in M_{m \times n}$, denote the entry in its *i*-the row and *j*-th column by A_{ij} . Define the vector space operations on $M_{m \times n}$ as follows:

addition: $(A + B)_{ij} := A_{ij} + B_{ij}$ for all $A, B \in M_{m \times n}$; scalar multiplication: $(cA)_{ij} := cA_{ij}$ for all $A \in M_{m \times n}$ and $c \in F$. For example, let $F = \mathbb{Q}$, m = 2, and n = 3. We have

$$2\left(\begin{array}{rrrr}1 & 0 & 3\\-1 & 2 & 0\end{array}\right) + 5\left(\begin{array}{rrrr}0 & 2 & -1\\1 & 0 & 4\end{array}\right) = \left(\begin{array}{rrrr}2 & 10 & 1\\3 & 4 & 20\end{array}\right).$$

Calling this last matrix A, we have $A_{1,1} = 2, A_{1,2} = 10, \ldots, A_{2,3} = 20$.

(iv) (**Important.**) If S is any set, let F^S be the set of functions $f: S \to F$. This function space is naturally an F-vector space (i.e., a vector space with scalar field F) with the following operations: for $f, g \in F^S$ and $t \in F$ define f + g and tf by

addition:
$$(f+g)(s) := f(s) + g(s)$$

scalar multiplication: (tf)(s) := t(f(s)).

Special cases:

• If $S = \{1, \ldots, n\}$, then F^S is essentially F^n . For example, we can think of $(3, 2) \in \mathbb{R}$ as the function

$$f: \{1, 2\} \to \mathbb{R}$$
$$1 \mapsto 3$$
$$2 \mapsto 2.$$

In general, $(a_1, \ldots, a_n) \in F^n$ can be thought of as the function

$$f: \{1, \dots, n\} \to F$$
$$i \mapsto a_i.$$

- Similarly, if $S = \{(i, j) : i = 1, ..., m \text{ and } j = 1, ..., n\}$, then F^S may be identified with $M_{m \times n}$ with $f \in F^S$ corresponding to the matrix A where $A_{ij} = f(i, j)$.
- If $S = \{1, 2, 3, ...\}$, then F^S is the vector space of infinite sequences in F. For example, the sequence 1, 1/2, 1/4, 1/8, ... in \mathbb{Q} can be identified with the function $f: S \to \mathbb{Q}$ defined by $f(i) = 1/2^i$.

Definition. A subset $W \subseteq V$ of a vector space V is a *subspace* of V is it is a vector space with the operations of addition and scalar multiplication inherited from V.

We will talk about subspaces in the next class.