Math 201 lecture for Friday, Week 2

Subspaces and spanning sets I

Note: Unless otherwise stated, from now on V' will denote a vector space over a
field F.

The over-arching goal of the next several classes is to define the notions of dimension
and isomorphism and show that every finite-dimensional vector space over F' is iso-
morphic to the vector space of d-tuples, F¢, where d is the dimension. Today’s class
lays some of the groundwork for reaching that goal.

Definition. Let S be a nonempty subset of V. Then v € V is a linear combination
of vectors in S if there exist uq,...,u, € S and ay,...,a, € F (for some n) such that

n
v = 5 Q;U; = QUL + **+ + AQplUy.
i=1

Example. Let S = {(3,2),(2,—-1)} C R. Is (—1,4) a linear combination of vectors
in S7 In other words, do there exist a,b € R such that

a(3,2) + b(2, —1) = (—1,4)?

Since a(3,2) +b(2, —1) = (3a+2b,2a —b), the above requirement is equivalent to the
existence of a,b € R such that
3a+2b= -1

%2a— b=4,

a system of linear equations! Apply our algorithm to look for solutions:

3 21 -1 1 —T1—"T9 1 3| -5 ro—+ro—2r] 1 3] =5 T2—>—%T2
2 —1 4 2 —1 4 0 —7| 14

1 3 _5 r1—7r1—37r2 1 O 1
0 1|-2 0 1]-2 )"
Thus, a =1 and b = —2. Check:

1-(3,2) —2(2,-1) = (=1,4). v

So (—1,4) is a linear combination of the two given vectors. (If it were not, we would
have had an inconsistent system, i.e., a system with no solutions.)
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Definition. Let S be a nonempty subset of V. The span of S, denoted Span(S), is
the set of all linear combinations of elements of S. By convention Span () := {0}, and
we say that 0 is the empty linear combination.

Example. In R?,
Span{(1,1)} = {(a,a) : a € R}.
In R3,
Span{(1,0,0),(0,1,0)} = {a(1,0,0) + b(0,1,0) : a,b € R} = {(a,b,0) : a,b € R} .
Note that the same set can be spanned by different sets of vectors, for instance,

Span{(1,0,0),(0,1,0)} = Span{(1,0,0),(0,2,0)}
— Span {(1,0,0), (0,1,0), (2,3,0)}.

A point in R? is in any of these sets if and only if its third component is 0.

Definition. A subset W C V is a subspace of V if W is a vector space itself with
the operations of addition and scalar multiplication inherited from V.

Proposition. W C V is a subspace of V' if and only if
1.0ew

2. W is closed under addition (z,y e W =z +y € W)
3. W is closed under scalar multiplication (¢ € F and w € W = cw € W).

Proof. Exercise. Part 1 is there to ensure that W is nonempty. (Note that Part
2 and Part 3 are vacuously true for the empty set, and yet the empty set is not a
subspace because of Part 1.) O

Examples.

1. W={(a,0) : a € R} is a subspace of R.

Proof. Letting a = 0, we see (0,0) € W. If (a,0),(b,0) € W, then (a,0) +
(b,0) = (a+0,0) € W. If ¢ € R and (a,0) € W, then ¢(a,0) = (ca,0) € W.
Thus, W is a subspace of R2. O

2. Let

V={f:R—=R: fis continuous},
W ={f:R —R: fis differentiable} .



Both V and W are subspaces of the vector space R¥ of functions from R to R
(recall our earlier notation F*¥ for functions from a set S to a field F'), and W
is a subspace of V.

3. Let W = {(a,b) € R? : ab = 0}. So W is the union of the two coordinate axes
in R%2. Each of these coordinate axes is a subspace of R?, but W is not. For
instance, (1,0), (0,1) € W, but (1,0) + (0,1) = (1,1) ¢ W. So W is not closed

under addition.

4. {0} and V are always subspaces of V. The empty set () is not a subspace (since
it does not contain 0).

Proposition. If W; and W5 are subspaces of V', so is W7 N Wh.

Proof. Since W; and W, are subspaces, we have 0 € W, for ¢« = 1,2. Hence,
0eWinW,. If u,v € Wy N Ws, then u,v € W; for i = 1,2. Hence, u+ v € W; for
1 = 1,2. Similarly, for each A € F,

veWinNW, = wueW;anduelW,
= Au € W; and Au € Wy
= Aue W N,

Proposition. Let S be a subset of V. Then:

1. Span(9S) is a subspace of V.

2. If W C V is a subspace and S C W, then Span(S) C W. (In other words:
a subspace is closed under the process of taking linear combinations of its ele-
ments.)

3. Every subspace of V' is the span of some subset of V.

Proof. 1. If S = (), then Span(S) = {0}, which is a subspace of V. Otherwise, we will
show 0 € Span(S) and Span(S) is closed under addition and scalar multiplication.
Since S # (), there exists some u € S. Then 0 - u is a linear combination of elements
in S, and 0-u = 0 (the first 0 in this equation is in F, and the second is in V).
Hence, 0 € Span(S). Now let x,y € Span(.S) so that

= a1 + -+ Gy,
y:blvl+"'+bnvn



for some a;,b; € F and u;,v; € S. Then
T4y =au +- -+ aply, + bjvg + -+ + by, € Span(S)
and for each \ € F,
A = Majug + -+ + apuy) = (Aag)ug + -+ - + (Apam)um € Span(S).

2. Take x € Span(S). Then x = aju; + -+ + apu, for some a; € F and u; € S.
Since S C W, we have u; € W for all 7, and since W is a subspace, it is closed under
vector addition and scalar multiplication. Therefore, x € W.

3. Span(W) = W. O
Definition. A subset S C V' generates a subspace W if Span(S) = W,

Examples.

1. {1,z,2% ..., } generates P(F), the vector space of polynomials in one variable
over F. More commonly, this vector space is denoted F'[x].

2. {(1,0),(0,1)} generates R So do {(1,0),(0,1),(3,—2)} and {(1,1),(0,1)}.

3. The i-the standard basis vector for F™ is e; := (0,...,0,1,0,...,0), the vector
whose only nonzero entry is in the i-th component. We have that {ey,...,e,}
generates F.



