
Math 201 lecture for Friday, Week 2

Subspaces and spanning sets I

Note: Unless otherwise stated, from now on V will denote a vector space over a
field F .

The over-arching goal of the next several classes is to define the notions of dimension
and isomorphism and show that every finite-dimensional vector space over F is iso-
morphic to the vector space of d-tuples, F d, where d is the dimension. Today’s class
lays some of the groundwork for reaching that goal.

Definition. Let S be a nonempty subset of V . Then v ∈ V is a linear combination
of vectors in S if there exist u1, . . . , un ∈ S and a1, . . . , an ∈ F (for some n) such that

v =
n∑

i=1

aiui = a1u1 + · · ·+ anun.

Example. Let S = {(3, 2), (2,−1)} ⊂ R. Is (−1, 4) a linear combination of vectors
in S? In other words, do there exist a, b ∈ R such that

a(3, 2) + b(2,−1) = (−1, 4)?

Since a(3, 2) + b(2,−1) = (3a+ 2b, 2a− b), the above requirement is equivalent to the
existence of a, b ∈ R such that

3a + 2b = −1

2a− b = 4,

a system of linear equations! Apply our algorithm to look for solutions:(
3 2 −1
2 −1 4

)
r1→r1−r2−−−−−−→

(
1 3 −5
2 −1 4

)
r2→r2−2r1−−−−−−→

(
1 3 −5
0 −7 14

)
r2→−

1
7
r2

−−−−−→

(
1 3 −5
0 1 −2

)
r1→r1−3r2−−−−−−→

(
1 0 1
0 1 −2

)
.

Thus, a = 1 and b = −2. Check:

1 · (3, 2)− 2(2,−1) = (−1, 4). X

So (−1, 4) is a linear combination of the two given vectors. (If it were not, we would
have had an inconsistent system, i.e., a system with no solutions.)
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Definition. Let S be a nonempty subset of V . The span of S, denoted Span(S), is
the set of all linear combinations of elements of S. By convention Span ∅ := {0}, and
we say that 0 is the empty linear combination.

Example. In R2,
Span {(1, 1)} = {(a, a) : a ∈ R} .

In R3,

Span {(1, 0, 0), (0, 1, 0)} = {a(1, 0, 0) + b(0, 1, 0) : a, b ∈ R} = {(a, b, 0) : a, b ∈ R} .

Note that the same set can be spanned by different sets of vectors, for instance,

Span {(1, 0, 0), (0, 1, 0)} = Span {(1, 0, 0), (0, 2, 0)}
= Span {(1, 0, 0), (0, 1, 0), (2, 3, 0)} .

A point in R3 is in any of these sets if and only if its third component is 0.

Definition. A subset W ⊆ V is a subspace of V if W is a vector space itself with
the operations of addition and scalar multiplication inherited from V .

Proposition. W ⊆ V is a subspace of V if and only if

1. 0 ∈ W
2. W is closed under addition (x, y ∈ W ⇒ x+ y ∈ W )

3. W is closed under scalar multiplication (c ∈ F and w ∈ W ⇒ cw ∈ W ).

Proof. Exercise. Part 1 is there to ensure that W is nonempty. (Note that Part
2 and Part 3 are vacuously true for the empty set, and yet the empty set is not a
subspace because of Part 1.) �

Examples.

1. W = {(a, 0) : a ∈ R} is a subspace of R2.

Proof. Letting a = 0, we see (0, 0) ∈ W . If (a, 0), (b, 0) ∈ W , then (a, 0) +
(b, 0) = (a + b, 0) ∈ W . If c ∈ R and (a, 0) ∈ W , then c(a, 0) = (ca, 0) ∈ W .
Thus, W is a subspace of R2. �

2. Let

V = {f : R→ R : f is continuous} ,
W = {f : R→ R : f is differentiable} .
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Both V and W are subspaces of the vector space RR of functions from R to R
(recall our earlier notation F S for functions from a set S to a field F ), and W
is a subspace of V .

3. Let W = {(a, b) ∈ R2 : ab = 0}. So W is the union of the two coordinate axes
in R2. Each of these coordinate axes is a subspace of R2, but W is not. For
instance, (1, 0), (0, 1) ∈ W , but (1, 0) + (0, 1) = (1, 1) /∈ W . So W is not closed
under addition.

4. {0} and V are always subspaces of V . The empty set ∅ is not a subspace (since
it does not contain 0).

Proposition. If W1 and W2 are subspaces of V , so is W1 ∩W2.

Proof. Since W1 and W2 are subspaces, we have 0 ∈ Wi for i = 1, 2. Hence,
0 ∈ W1 ∩W2. If u, v ∈ W1 ∩W2, then u, v ∈ Wi for i = 1, 2. Hence, u + v ∈ Wi for
i = 1, 2. Similarly, for each λ ∈ F ,

u ∈ W1 ∩W2 ⇒ u ∈ W1 and u ∈ W2

⇒ λu ∈ W1 and λu ∈ W2

⇒ λu ∈ W1 ∩W2.

�

Proposition. Let S be a subset of V . Then:

1. Span(S) is a subspace of V .

2. If W ⊆ V is a subspace and S ⊆ W , then Span(S) ⊆ W . (In other words:
a subspace is closed under the process of taking linear combinations of its ele-
ments.)

3. Every subspace of V is the span of some subset of V .

Proof. 1. If S = ∅, then Span(S) = {0}, which is a subspace of V . Otherwise, we will
show 0 ∈ Span(S) and Span(S) is closed under addition and scalar multiplication.
Since S 6= ∅, there exists some u ∈ S. Then 0 · u is a linear combination of elements
in S, and 0 · u = 0 (the first 0 in this equation is in F , and the second is in V ).
Hence, 0 ∈ Span(S). Now let x, y ∈ Span(S) so that

x = a1u1 + · · ·+ amum

y = b1v1 + · · ·+ bnvn
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for some ai, bi ∈ F and ui, vi ∈ S. Then

x+ y = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn ∈ Span(S)

and for each λ ∈ F ,

λx = λ(a1u1 + · · ·+ amum) = (λa1)u1 + · · ·+ (λmam)um ∈ Span(S).

2. Take x ∈ Span(S). Then x = a1u1 + · · · + amum for some ai ∈ F and ui ∈ S.
Since S ⊆ W , we have ui ∈ W for all i, and since W is a subspace, it is closed under
vector addition and scalar multiplication. Therefore, x ∈ W .

3. Span(W ) = W . �

Definition. A subset S ⊆ V generates a subspace W if Span(S) = W .

Examples.

1. {1, x, x2, . . . , } generates P (F ), the vector space of polynomials in one variable
over F . More commonly, this vector space is denoted F [x].

2. {(1, 0), (0, 1)} generates R2. So do {(1, 0), (0, 1), (3,−2)} and {(1, 1), (0, 1)}.

3. The i-the standard basis vector for F n is ei := (0, . . . , 0, 1, 0, . . . , 0), the vector
whose only nonzero entry is in the i-th component. We have that {e1, . . . , en}
generates F n.

4


