Math 201 Homework for Friday, Week 13

Due: Friday, December 3.

PROBLEM 1. Let $S = \{(1,0,i), (1,2,1)\}$ in \mathbb{C}^3 (with the standard inner product). Compute S^{\perp} .

PROBLEM 2. Let $V = \mathcal{P}(\mathbb{R})$ be the vector space of all polynomials with coefficients in \mathbb{R} , with inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t)g(t) dt$. Let $W = \mathcal{P}_1(\mathbb{R})$. (Warning: to get this problem right, you will need to be very careful with your calculations and double-check your solutions.)

- (a) Find an orthonormal basis $\{u_1, u_2\}$ for W.
- (b) Find the closest polynomial in W to $h(x) = 3 2x + x^2$. Express your solution in two forms: (i) as a linear combination of u_1 and u_2 , and (ii) as a linear combination of 1 and x.

PROBLEM 3. Let V be an n-dimensional vector space over $F = \mathbb{R}$ or \mathbb{C} , and let \langle , \rangle be an inner product on V. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be an ordered basis for V (not necessarily orthonormal). Let A be the $n \times n$ matrix given by

$$A_{ij} = \langle v_j, v_i \rangle.$$

Recall that for $x \in V$, $[x]_{\mathcal{B}}$ denotes the coordinate vector for x with respect to the basis \mathcal{B} , and as usual, we will think of this vector in F^n as an $n \times 1$ matrix.

(a) Prove that for all $x, y \in V$,

$$\langle x, y \rangle = ([y]_{\mathcal{B}})^* A ([x]_{\mathcal{B}}).$$

(Recall that for a matrix C, we define \overline{C} by $\overline{C}_{ij} = \overline{(C_{ij})}$, and then we define the conjugate transpose by $C^* = \overline{C^t}$. *Hint*: compute both sides using sum notation. On the right-hand side, you will be computing the (1, 1)-entry of a 1×1 matrix.)

- (b) Prove that the matrix A satisfies $A = A^*$.
- (c) If the basis \mathcal{B} is orthonormal, what is the matrix A?
- (d) (Bonus) Let \mathcal{D} be another ordered basis for V, and let C be the associated $n \times n$ matrix. How are A and C related?