Due: Friday, November 12.

PROBLEM 1. For each of the following matrices $A \in M_{n \times n}(F)$

- (i) Determine all eigenvalues of A.
- (ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ .
- (iii) If possible, find a basis for F^n consisting of eigenvectors of A.
- (iv) If successful in finding such a basis, determine an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$
 for $F = \mathbb{R}$.
(b) $A = \begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}$ for $F = \mathbb{R}$
(c) $A = \begin{pmatrix} 7 & -5 \\ 10 & -7 \end{pmatrix}$ for $F = \mathbb{R}$.
(d) $A = \begin{pmatrix} 7 & -5 \\ 10 & -7 \end{pmatrix}$ for $F = \mathbb{C}$.
(e) $A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix}$ for $F = \mathbb{R}$.

PROBLEM 2. Let $f: V \to V$ be a linear transformation. For a positive integer m, we define f^m inductively as $f \circ f^{m-1}$. Prove that if λ is an eigenvalue for f, then λ^m is an eigenvalue for f^m .

PROBLEM 3. Let $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ defined as $T(A) = A^t$ (taking the transpose). One can prove that T is a linear transformation.

- (a) Show that the only eigenvalues of T are 1 and -1. (*Hint:* Problem 2 might help.)
- (b) For n = 2, describe the eigenvectors corresponding to each eigenvalue.
- (c) Find an ordered basis \mathcal{B} for $M_{2\times 2}(\mathbb{R})$ such that the matrix that represents T with respect to \mathcal{B} is diagonal.