Due: Friday, October 29.

PROBLEM 1. Compute the determinant of the following matrices by using row operations.

(a)
$$\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 3 & -1 & 2 \\ 2 & 4 & 7 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$
(c) $\begin{pmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{pmatrix}$

(d) (BONUS) Generalize part (c) for the $n \times n$ matrix

x
$$\begin{pmatrix} n & -1 & \cdots & -1 \\ -1 & n & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n \end{pmatrix}$$
, with

n in the main diagonal and -1 everywhere else.

PROBLEM 2. Let V be a vector space. For each integer r > 0, we now give a provisional definition of a new vector space called $\bigwedge^r V$. A spanning set for $\bigwedge^r V$ consists of expressions of the form $v_1 \land \cdots \land v_r$ where $v_1, \ldots, v_r \in V$. For example, if $u, v, w \in V$, the following would be typical elements of $\bigwedge^2 V$:

$$\omega = 4 u \wedge v - 5 u \wedge w + 7 v \wedge w$$
$$\mu = 2 u \wedge v + 9 u \wedge w + 6 v \wedge w.$$

Addition is done by combining like terms, and scaling is done by scaling each term. For instance, continuing the example above, we get

$$\omega + \mu = 6 u \wedge v + 4 u \wedge w + 13 v \wedge w$$

$$5 \omega = 20 u \wedge v - 25 u \wedge w + 35 v \wedge w.$$

We now add a couple of rules. First, these "wedge products" of vectors are linear in each component. For $v_i \in V$ and $a \in F$,

$$v_1 \wedge \dots \wedge v_{i-1} \wedge (av_i + v'_i) \wedge v_{i+1} \wedge \dots v_r =$$

$$a v_1 \wedge \dots \wedge v_{i-1} \wedge v_i \wedge v_{i+1} \wedge \dots \wedge v_r$$

$$+$$

$$v_1 \wedge \dots \wedge v_{i-1} \wedge v'_i \wedge v_{i+1} \wedge \dots \wedge v_r.$$

Second, we declare that $v_1 \wedge \cdots \wedge v_r = 0$ if $v_i = v_j$ for some $i \neq j$. To illustrate these rules in action suppose $u, v, w \in V$. Then in $\bigwedge^3 V$, we have the following:

$$u \wedge (2u + 3v + 5w) \wedge w = u \wedge (2u) \wedge w + u \wedge (3v) \wedge w + u \wedge (5w) \wedge w$$
$$= 2u \wedge u \wedge w + 3u \wedge v \wedge w + 5u \wedge w \wedge w$$
$$= 0 + 3u \wedge v \wedge w + 0$$
$$= 3u \wedge v \wedge w.$$

Another example, this time in $\bigwedge^2 V$:

$$(u+2v) \wedge (u+3v) = u \wedge (u+3v) + (2v) \wedge (u+3v)$$
$$= u \wedge u + u \wedge (3v) + (2v) \wedge u + (2v) \wedge (3v)$$
$$= 0 + 3 u \wedge v + 2 v \wedge u + 6 v \wedge v$$
$$= 3 u \wedge v + 2 v \wedge u + 0$$
$$= 3 u \wedge v + 2 v \wedge u.$$

It turns out there is a little more we can do to simplify this last example. By the second rule, we have $(u+v) \wedge (u+v) = 0$, since in this expression we have two copies of the same vector. But linearly expanding this expression, we get

$$0 = (u + v) \land (u + v)$$

= $u \land (u + v) + v \land (u + v)$
= $u \land u + u \land v + v \land u + v \land v$
= $0 + u \land v + v \land u + 0$
= $u \land v + v \land u$.

Thus, $u \wedge v + v \wedge u = 0$. This means that

$$u \wedge v = -v \wedge u.$$

In fact, in a wedge product of vectors, swapping any two locations negates the expression. (The proof is similar to the one we just gave in the case of r = 2.) For instance,

$$u \wedge v \wedge w = -u \wedge w \wedge v = w \wedge u \wedge v = -w \wedge v \wedge u.$$

Continuing our example from above, we get

$$(u+2v) \wedge (u+3v) = \dots \quad \text{(see earlier calculation)}$$
$$= 3 u \wedge v + 2 v \wedge u$$
$$= 3 u \wedge v - 2 u \wedge v$$
$$= u \wedge v.$$

Now for some problems:

(a) Let $V = \mathbb{R}^2$, and take two vectors u = (a, b) and v = (c, d) in \mathbb{R}^2 . Let $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Writing u and v as linear combinations of e_1 and e_2 , find the number k in terms of a, b, c, d such that

$$u \wedge v = k \, e_1 \wedge e_2,$$

in $\bigwedge^2 V$. What is the relation between k and det $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$?

(b) Now let $V = \mathbb{R}^3$, and take vectors $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ in \mathbb{R}^3 . Writing these vectors as linear combinations of the standard basis vectors $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$, and $e_3 = (0, 0, 1)$, find numbers p, q, r in terms of the u_i and the v_i such that

$$u \wedge v = p e_2 \wedge e_3 - q e_1 \wedge e_3 + r e_1 \wedge e_2.$$

(Watch out for the minus sign in front of q.) Physics students may note a relation with the cross product of two vectors in \mathbb{R}^3 .