
Math 201 Homework for Friday, Week 8

Due: Friday, October 29.

Problem 1. Compute the determinant of the following matrices by using row oper-
ations.

(a)

1 4 7
2 5 8
3 6 9



(b)


1 3 −1 2
2 4 7 −3
0 0 2 0
0 0 0 6



(c)


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4



(d) (BONUS) Generalize part (c) for the n× n matrix


n −1 · · · −1
−1 n · · · −1
...

...
. . .

...
−1 −1 · · · n

, with

n in the main diagonal and −1 everywhere else.

Problem 2. Let V be a vector space. For each integer r > 0, we now give a
provisional definition of a new vector space called

∧r V . A spanning set for
∧r V

consists of expressions of the form v1 ∧ · · · ∧ vr where v1, . . . , vr ∈ V . For example,
if u, v, w ∈ V , the following would be typical elements of

∧2 V :

ω = 4u ∧ v − 5u ∧ w + 7 v ∧ w
µ = 2u ∧ v + 9u ∧ w + 6 v ∧ w.

Addition is done by combining like terms, and scaling is done by scaling each term.
For instance, continuing the example above, we get

ω + µ = 6u ∧ v + 4u ∧ w + 13 v ∧ w
5ω = 20u ∧ v − 25u ∧ w + 35 v ∧ w.
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We now add a couple of rules. First, these “wedge products” of vectors are linear in
each component. For vi ∈ V and a ∈ F ,

v1 ∧ · · · ∧ vi−1 ∧ (avi + v′i) ∧ vi+1 ∧ . . . vr =

a v1 ∧ · · · ∧ vi−1 ∧ vi ∧ vi+1 ∧ · · · ∧ vr
+

v1 ∧ · · · ∧ vi−1 ∧ v′i ∧ vi+1 ∧ · · · ∧ vr.

Second, we declare that v1 ∧ · · · ∧ vr = 0 if vi = vj for some i 6= j. To illustrate these
rules in action suppose u, v, w ∈ V . Then in

∧3 V , we have the following:

u ∧ (2u+ 3v + 5w) ∧ w = u ∧ (2u) ∧ w + u ∧ (3v) ∧ w + u ∧ (5w) ∧ w
= 2u ∧ u ∧ w + 3u ∧ v ∧ w + 5u ∧ w ∧ w
= 0 + 3u ∧ v ∧ w + 0

= 3u ∧ v ∧ w.

Another example, this time in
∧2 V :

(u+ 2v) ∧ (u+ 3v) = u ∧ (u+ 3v) + (2v) ∧ (u+ 3v)

= u ∧ u+ u ∧ (3v) + (2v) ∧ u+ (2v) ∧ (3v)

= 0 + 3u ∧ v + 2 v ∧ u+ 6 v ∧ v
= 3u ∧ v + 2 v ∧ u+ 0

= 3u ∧ v + 2 v ∧ u.

It turns out there is a little more we can do to simplify this last example. By the
second rule, we have (u+ v)∧ (u+ v) = 0, since in this expression we have two copies
of the same vector. But linearly expanding this expression, we get

0 = (u+ v) ∧ (u+ v)

= u ∧ (u+ v) + v ∧ (u+ v)

= u ∧ u+ u ∧ v + v ∧ u+ v ∧ v
= 0 + u ∧ v + v ∧ u+ 0

= u ∧ v + v ∧ u.

Thus, u ∧ v + v ∧ u = 0. This means that

u ∧ v = −v ∧ u.
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In fact, in a wedge product of vectors, swapping any two locations negates the ex-
pression. (The proof is similar to the one we just gave in the case of r = 2.) For
instance,

u ∧ v ∧ w = −u ∧ w ∧ v = w ∧ u ∧ v = −w ∧ v ∧ u.

Continuing our example from above, we get

(u+ 2v) ∧ (u+ 3v) = . . . (see earlier calculation)

= 3u ∧ v + 2 v ∧ u
= 3u ∧ v − 2u ∧ v
= u ∧ v.

Now for some problems:

(a) Let V = R2, and take two vectors u = (a, b) and v = (c, d) in R2. Let e1 = (1, 0)
and e2 = (0, 1). Writing u and v as linear combinations of e1 and e2, find the
number k in terms of a, b, c, d such that

u ∧ v = k e1 ∧ e2,

in
∧2 V . What is the relation between k and det

(
a b
c d

)
?

(b) Now let V = R3, and take vectors u = (u1, u2, u3) and v = (v1, v2, v3) in R3.
Writing these vectors as linear combinations of the standard basis vectors e1 =
(1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), find numbers p, q, r in terms of the ui
and the vi such that

u ∧ v = p e2 ∧ e3 − q e1 ∧ e3 + r e1 ∧ e2.

(Watch out for the minus sign in front of q.) Physics students may note a relation
with the cross product of two vectors in R3.
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