Due: Friday, October 15.

PROBLEM 1. The *trace* of an $n \times n$ matrix A is the sum of its diagonal elements:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

- (a) If A and B are $n \times n$ matrices, prove that tr(AB) = tr(BA). (Use the definition of matrix multiplication and summation notation in your proof.)
- (b) If P is an invertible $n \times n$ matrix, prove that $tr(PAP^{-1}) = tr(A)$.
- (c) Consider the following ordered basis for $\mathcal{M}_{2\times 2}(F)$:

$$\alpha = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\rangle.$$

The trace defines a function tr: $\mathcal{M}_{2\times 2}(F) \to F$, and it is not hard to check that it is a linear transformation of vector spaces over F (you don't have to prove that here, although it is a good exercise to do). Compute the matrix representing the trace function tr: $\mathcal{M}_{2\times 2}(F) \to F$ with respect to α for the domain and with respect to the basis {1} for the codomain.

PROBLEM 2. Let

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & -3 \\ 4 & 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 4 \\ -1 & -2 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}.$$

Compute, if possible, the following. If it is not possible, explain why.

- (a) AB,
- (b) A(2B+3C),
- (c) (AB)D,
- (d) A(BD),
- (e) AD.

PROBLEM 3. Let V be a vector space over a field F. Recall that the identity function $id_V: V \to V$ is given by $id_V(v) = v$ for all $v \in V$. This function is linear (if you are not convinced, prove it, but you do not have to turn in that proof).

- (a) Let V be a vector space of dimension n and let \mathcal{B} be an ordered basis for V. Show that the matrix representing id_V with respect to the basis \mathcal{B} for both the domain and the codomain is I_n (the $n \times n$ identity matrix).
- (b) Let V and W be vector spaces of dimension n and let $f: V \to W$ be an isomorphism with inverse $f^{-1}: W \to V$. Let \mathcal{B} and \mathcal{D} be ordered bases for V and W, respectively. If A is the matrix representing f with respect to the bases \mathcal{B} and \mathcal{D} , what is the matrix for f^{-1} with respect to the bases \mathcal{D} and \mathcal{B} ? Justify your answer.
- (c) Consider the linear transformation $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (3x + y, -x + 4y). Using part (b), find the inverse of f.