Math 201 Homework for Week 3, Tuesday

Due: Tuesday, September 14.

PROBLEM 1. In each of the following:

- Determine whether the given vector v is in the span of the set S.
- If v is in the span of S, then explicitly write v as a linear combination of the vectors in S.

(a)
$$V = \mathcal{P}_3(\mathbb{Q}), v = x^3 + 8x^2 + 7x - 18,$$

 $S = \{x^3 + 3x - 2, x^3 + 4x^2 - x + 2, x^2 - 2x + 3\}.$
(b) $V = M_{2 \times 2}(\mathbb{R}), v = \begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix},$
 $S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix} \right\}.$

Definition. Let S be a subset of a vector space V. We say S generates V if Span(S) = V.

PROBLEM 2. Let F be a field and consider $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\} \subseteq F^3$.

- (a) Prove that if $F = \mathbb{Q}$, then S generates \mathbb{Q}^3 .
- (b) Prove that if $F = \mathbb{F}_2$, then S does not generate \mathbb{F}_2^3 .

PROBLEM 3. Let V be a vector space over a field F, and let S_1 and S_2 be two subsets of V.

- (a) Prove that $\operatorname{Span}(S_1 \cap S_2) \subseteq \operatorname{Span}(S_1) \cap \operatorname{Span}(S_2)$.
- (b) Give an example in which $\text{Span}(S_1 \cap S_2)$ and $\text{Span}(S_1) \cap \text{Span}(S_2)$ are equal, and one in which they are not equal.