Math 201 Homework for Friday, Week 3

Due: Friday, September 17.

PROBLEM 1. Determine whether the following sets are linearly dependent or linearly independent. If they are linearly dependent, find a subset that is linearly independent and has the same span.

(a)
$$\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$
 in $M_{3 \times 2}(\mathbb{Q})$.

(b) $\{(1,3,2), (2,-1,2), (1,2,4)\}$ in \mathbb{R}^3 .

(c) $\{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ in $(\mathbb{F}_2)^3$ (recall that $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$, the field with two elements).

PROBLEM 2. Let V be a vector space over \mathbb{R} . Let u and v be distinct vectors in V. Prove that $\{u, v\}$ is linearly independent if and only if $\{u + v, u - v\}$ is linearly independent.

BONUS: Would the same be true over \mathbb{F}_2 ?

Problem 3.

- (a) For any field F, we have defined the vector space F^n of *n*-tuples with components in F. List all elements of (i) F^2 and (ii) F^3 in the case that $F = \mathbb{F}_2$.
- (b) Let $S = \{u_1, ..., u_n\}$ be a set of linearly independent vectors in a vector space over \mathbb{F}_2 . How many elements are in Span(S)? Justify your solution.