Math 201 Homework for Week 2, Friday

PROBLEM 1. Let $V = \mathbb{R}^2$. For the following pairs of operations, decide whether they make V into a vector space over \mathbb{R} . Justify your answer. In what follows, let $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$ and $r \in \mathbb{R}$.

(a)

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 y_2)$$
 and $r \cdot (x_1, x_2) = (rx_1, x_2)$

(b)

$$(x_1, x_2) + (y_1, y_2) = (2x_1 + 2y_1, 3x_2 + 3y_2)$$
 and $r \cdot (x_1, x_2) = (rx_1, rx_2).$

PROBLEM 2. Here are two templates for showing a subset W of a vector space V over a field F is a subspace:

Proof 1. First note that $\vec{0} \in W$ since _____. Hence, $W \neq \emptyset$. Next, suppose that $u, v \in W$. Then _____. Hence, $u+v \in W$. Now suppose $r \in F$ and $w \in W$. Then _____. Therefore, $r \cdot w \in W$.

Proof 2. First note that $\vec{0} \in W$ since _____. Hence, $W \neq \emptyset$. Next, suppose that $r \in F$ and $u, v \in W$. Then _____. Hence, $u + r \cdot v \in W$. \Box Use one of these two templates for each of the following exercises.

- (a) Show that $W = \{(x, y, z) \in \mathbb{R}^3 \mid 2x y 3z = 0\}$ is a subspace of \mathbb{R}^3 .
- (b) Show that the set $W = \{f : \mathbb{R} \to \mathbb{R} : f(t) = f(-t)\}$ is a subspace of the vector space of real-valued functions of one variable. (You will need to carefully use the definitions given in Example 1.12, p. 84, of the text.)