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Monday, Week 1: Solving systems of linear equations

First goal: solve systems of linear equations using Gaussian elimination.

Note: In all of the examples today, we will work over the real numbers.

Example 1. Solve the following system of two linear equations:

3x + 2y = 5

2x− y = 1.

solution: We find a solution by eliminating variables. To get rid of y, multiply the
second equation through by 2 (which does not change the set of solutions), and add
the equations:

3x+ 2y = 5
4x− 2y = 2
7x = 7

⇒ x = 1.

Now substitute x = 1 back into either of the equations, and solve for y:

x = 1 and 3x+ 2y = 5 ⇒ y = 1.

So there is a unique solution: x = y = 1. �

Here is the geometric picture:

3x+ 2y = 5

2x− y = 1

solution: (1, 1)
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Week 1, Monday 5

Remark. Note that the line given by 3x+2y = 5 is perpendicular to the vector (3, 2)
and the line given by 2x−y = 1 is perpendicular to (2,−1). Do you see the relationship
between these vectors and the coefficients of the equations? We will get back to this
latter in the course.

Example 2. System:
−9x− 3y = 6

3x + y = −2.

Since the first equation is a scalar multiple of the second, they have the same solution
set. In this case, the solution set is infinite:

{(x, y) : y = −3x− 2} .

Geometry:

3x+ y = −2

(or −9x− 3y = 6)

Example 3. System:
−9x− 3y = 6

3x + y = −1.

Dividing through by −3, we see that the set of solutions to the first equation is the
same as the set of solutions to the equation

3x+ y = −2.

It is clear, though, that if (x, y) satisfies 3x + y = −2, it cannot also satisfy the
second equation in the system, 3x + y = 1. So the two equations in the system are
incompatible, and the solution set is empty.

The lines defined by the two equations are parallel:
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3x+ y = −2
3x+ y = −1

Example 4. System:
x+ 2y + z = 0

x + z = 4

x+ y + 2z = 1.

We will use this example to illustrate the general method (called Gaussian elimina-
tion.

General idea: replace the set of equations with an equivalent set of equations (i.e.,
having the same solutions set) but from which the set of solutions is evident. We find
equivalent sets of equations by using the following:

Row operations.

(a) multiply an equation by a nonzero scalar

(b) swap two equations

(c) add a multiple of one equation to another.

The reader should stop now and convince themselves that the solution set is invariant
under these operations.

The good news is that these operations are all we need to solve any system of linear
equations. We will illustrate with the system of three equations displayed above. We
first introduce a convenient way of notating our system:

x+ 2y + z = 0

x + z = 4

x+ y + 2z = 1.

 

 1 2 1 0
1 0 1 4
1 1 2 1

 .

The matrix on the right is called the augmented matrix for our system of linear
equations. At any point in the following string of calculations, one could convert
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back from an augmented matrix to its corresponding system of linear equations, and
that system would be equivalent to our orignal system.

In the following calculation, ri denotes the i-th row of the augmented matrix, and we
introducing some notation for describing the row operations leading from one matrix
to the next.

 1 2 1 0
1 0 1 4
1 1 2 1

 r2→r2−r1−−−−−−→
r3→r3−r1

 1 2 1 0
0 −2 0 4
0 −1 1 1

 r2→−
1
2
r2

−−−−−→

 1 2 1 0
0 1 0 −2
0 −1 1 1

 r3→r3+r2−−−−−−→

 1 2 1 0
0 1 0 −2
0 0 1 −1

 r1→−2r2+r1−−−−−−−→

 1 0 1 4
0 1 0 −2
0 0 1 −1

 r1→−r3+r1−−−−−−−→

 1 0 0 5
0 1 0 −2
0 0 1 −1

 .

The last augmented matrix is in reduced echelon form. We will define this term
carefully later. Translate the lasted augmented matrix back into a system of equations
to get a system that is equivalent to the original system, but from which the set of
solutions is evident:

x = 5

y = −2

z = −1.

So there is a unique solution in this case. Now for the most important step: check
your solution works for the original system:

5 + 2(−2) + (−1) = 0

5 + (−1) = 4

5 + (−2) + 2(−1) = 1.

That works. (We will suppress checking solutions throughout the result of this lecture,
but in practice, you should always check your solutions.)

Example 5. The following system is a slight modification of the previous one:

x+ 2y + z = 0

x + z = 4

x+ y + z = 1.
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Converting to the corresponding augmented matrix and performing a sequence of row
operations similar to those in the previous example gives 1 2 1 0

1 0 1 4
1 1 1 1

  

 1 0 1 4
0 1 0 −2
0 0 0 −1

 .

Converting back to equations gives the equivalent system:

x+ z = 4

y = −2

0 = −1

which clearly has no solutions. Thus, our original system has no solutions.

Example 6. System:
x+ 2y + z = 0

x + z = 4

x+ y + z = 2.

Converting to the corresponding augmented matrix and performing a sequence of row
operations similar to those in the previous example gives 1 2 1 0

1 0 1 4
1 1 1 2

  

 1 0 1 4
0 1 0 −2
0 0 0 0

 .

Equivalent system:

x+ z = 4

y = −2

0 = 0

We now get an infinite set of solutions:

{(x, y, z) : x+ z = 4 and y = −2} = {(x,−2, 4− x) : x ∈ R} .

This is a line in 3-space.
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Figure 1.1: The line {(x,−2, 4− x) : x ∈ R}.



Wednesday, Week 1: Reduced row echelon form

Goals for today:

• Discuss the computation of the reduced row echelon form of a system (or ma-
trix).

• If there is an infinite number of solutions to a system, know how to describe
the solution set in two ways (which we will call “parametric form” and “vector
form”).

• Vocabulary: reduced row echelon form, pivot variables (or pivot columns or
pivot entries), free variables.

Procedure:

(a) Convert the linear system into an augmented matrix.
(b) Compute the reduced row echelon form of the matrix.
(c) Convert the reduced matrix back into a system of equations.
(d) Solve for the pivot variables.
(e) Express your solution in one of two forms, as described in the examples below.

Echelon forms See our text for the precise definitions of echelon form (Chap-
ter I, Definition 1.10) and reduced row echelon form (Chapter III, Definition 1.3).
The general structure of a matrix in row echelon form is:

∗
∗
∗

∗
0

∗ = nonzero pivot entry

zeros below “staircase”

The general structure of a matrix in reduced row echelon form is:

10
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1

1

1

1
0

pivot entries = 1

zeros below “staircase”

and above pivot entries

Example 1. Find the solutions to the following linear system over the real numbers:

2x3 + 6x4 = 0

x1 + 2x2 + x3 + 3x4 = 1

2x1 + 4x2 + 3x3 + 9x4 + x5 = 5.

Solution: The associated augmented matrix is 0 0 2 6 0 0
1 2 1 3 0 1
2 4 3 9 1 5

 .

We now use row operations to compute the reduced row echelon form of this matrix: 0 0 2 6 0 0
1 2 1 3 0 1
2 4 3 9 1 5

 r1↔r2−−−→

 1 2 1 3 0 1
0 0 2 6 0 0
2 4 3 9 1 5

 r3→r3−2r1−−−−−−→

 1 2 1 3 0 1
0 0 2 6 0 0
0 0 1 3 1 3

 r2→
1
2
r2

−−−−→

 1 2 1 3 0 1
0 0 1 3 0 0
0 0 1 3 1 3

 r1→r1−r2−−−−−−→
r3→r3−r2

 1 2 0 0 0 1
0 0 1 3 0 0
0 0 0 0 1 3

 .

The final matrix is the reduced row echelon form of the original matrix. (See our text
for the precise definition.) The first, third, and fifth column are the pivot columns,
and the leading 1s in these column are called pivots.

The system of linear equations represented by the reduced echelon form has the same
set of solutions as the original system and is in a much simpler form:

x1 + 2x2 = 1

x3 + 3x4 = 0

x5 = 3.
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The variables corresponding to the pivots—in this case, x1, x3, and x5—are called
the pivot variables. The others—in this case, x2 and x4—are the free variables. The
free variables can take on any values, and once we assign values to the free variables,
they determine the values of the pivot variables. (Since we have two free variables,
the solution set is two-dimensional in a sense that will be precisely defined later in
the course.) The solution set is{

(x1, x2, x3, x4, x5) ∈ R5 : x1 + 2x2 = 1, x3 + 3x4 = 0, x5 = 3
}
.

Solving for the pivot variables, we have

x1 = 1− 2x2

x3 = −3x4

x5 = 3.

You should know how to express this solution in the following two ways. The first
involves writing the pivot variables in terms of the free variables:

{(1− 2x2, x2,−3x4, x4, 3) : x2, x4 ∈ R} .

We will call this the parametric version of the solution set. The second way of writing
the solution set we will call the vector version. It looks like this:


1
0
0
0
3

+ x2


−2

1
0
0
0

+ x4


0
0
−3

1
0

 : x2, x4 ∈ R

 .

Here we are using column vectors, and for instance,

x2


−2

1
0
0
0

 =


−2x2
x2
0
0
0


and we can add column vectors component-wise. Therefore,

1
0
0
0
3

+ x2


−2

1
0
0
0

+ x4


0
0
−3

1
0

 =


1− 2x2
x2
−3x4
x4
3

 .
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Example 2. Suppose the reduced row echelon form for an augmented matrix has
the form 

0 1 0 1 2 0 1 7
0 0 1 4 −1 0 3 −2
0 0 0 0 0 1 1 3
0 0 0 0 0 0 0 0

 .

Write the solution set in parametric and vector form.

Solution: The first step is to convert the augmented matrix as a system of equations:

x2 + x4 + 2x5 + x7 = 7

x3 + 4x4 − x5 + 3x7 = −2

x6 + x7 = 3.

(The last row corresponds to the equation 0 = 0, which we can discard.) The pivot
variables are x2, x3, and x6. The rest are free variables. Solving for the pivot variables:

x2 = 7− x4 − 2x5 − x7
x3 = −2− 4x4 + x5 − 3x7

x6 = 3− x7.

The parametric form for the solutions is

{(x1, 7− x4 − 2x5 − x7, −2− 4x4 + x5 − 3x7, x4, x5, 3− x7, x7) : x4, x5, x7 ∈ R} ,
(2.1)

and the vector form is



0
7
−2

0
0
3
0


+ x4



0
−1
−4

1
0
0
0


+ x5



0
−2

1
0
1
0
0


+ x7



0
−1
−3

0
0
−1

1


: x4, x5, x7 ∈ R


.

Important: Note how these two forms of the solutions are related. For instance,
looking at just the constant terms in (2.1) gives the first column vector displayed
above. Looking at just the coefficients of x4 gives the second column vector, and so
on. We get one column for the constants and one column for each of the free variables.
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The next example illustrates how linear algebra can be used to say something about
non-linear objects.

Example 3. Find all parabolas f(x) = ax2 + bx+ c passing through the points (1, 4)
and (3, 6) (determine a, b, and c).

Solution: To pass through (1, 4), we need f(1) = 4, i.e.,

4 = a · 12 + b · 1 + c = a+ b+ c,

and to pass through (3, 6), we need f(3) = 6, i.e.,

6 = a · 32 + b · 3 + c = 9a+ 3b+ c.

So we need to solve the system

a+ b+ c = 1

9a+ 3b+ c = 6.

Apply our algorithm:(
1 1 1 4
9 3 1 6

)
r2→r2−9r1−−−−−−→

(
1 1 1 4
0 −6 −8 −30

)
r2→−

1
6
r2

−−−−−→

(
1 1 1 4
0 1 4/3 5

)
r1→r1−r2−−−−−−→

(
1 0 −1/3 −1
0 1 4/3 5

)
.

The corresponding system is
a − 1

3
c = −1

b + 4
3
c = 5.

The solution set is {
(−1 + 1

3
c, 5− 4

3
c, c) : c ∈ R

}
or 

 −1
5
0

+ c

 1/3
−4/3

1

 : c ∈ R

 .

In this way, the set of parabolas passing through the two given points is parametrized
by a line in 3-space. For each c, we get a corresponding parabola—the graph of the
function

f(x) =
(
−1 + 1

3
c
)
x2 +

(
5− 4

3
c
)
x+ c.
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Here is a check that all of these parabolas pass through (1, 4) and (3, 6):

f(1) =
(
−1 + 1

3
c
)

+
(
5− 4

3
c
)

+ c = 4

f(3) =
(
−1 + 1

3
c
)

32 +
(
5− 4

3
c
)

3 + c = 6.

Here are graphs of a few of these (c = −1, 0, 1, 2, 3, 4, 5):



Friday, Week 1: Introduction to R

We will start the study of abstract vector spaces in the next class. Today, we will
introduce a particular vector space, Rn, and informally discuss some of its subspaces
(lines, planes, etc.)

Definition. Real n-space is the set

Rn := R× · · · × R︸ ︷︷ ︸
n-factors

:= {(x1, . . . , xn) : xi ∈ R for i = 1, . . . , n}.

with two operations: addition +: R×R→ R and scalar multiplication · : R×Rn → Rn

defined, respectively, as follows:

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

and
λ(x1, . . . , xn) := (λx1, . . . , λxn)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn and λ ∈ R.

Example 1. In R4,

(4, 0,−2, 1) + (3, 1, 2,−4) = (7, 1, 0,−3)

and
2(0, 3, 3, 7) = (0, 6, 6, 14).

We will often think of points in (x1, . . . , xn) ∈ Rn as column vectors or column
matrices:  x1

...
xn

 .

Example 2.

2

 1
2
4

−
 3

0
−4

 =

 −1
4

12

 .

16



Week 1, Friday 17

There are two standard ways to interpret an element p ∈ Rn: either as point in
space or as a vector (thought of as an arrow or direction1) For instance, we can think
of (1, 2) ∈ R2 as point:

x

y

1

2

or as an arrow/direction:

x

y

1

2

4 5

4

6

Geometrically, addition of vectors is given by the “parallelogram rule” and scalar
multiplication amounts to scaling the length of a vector but not its directions (except
that scaling by a negative number reverses direction):

u

v

u+ v

u

3u

u

−2u

1The word “vector” will soon have a technical definition: an element of a vector space.
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Definition (line in Rn). Let p, v ∈ Rn, with v 6= (0, . . . , 0). Then

{p+ λv : λ ∈ R}

is the line in Rn in the direction of v and passing through the point p.

Remarks.

(a) In the above definition, the set of all scalar multiples of v, i.e., {λv : λ ∈ R},
gives a line through the origin in the direction of v. We then translate that
line through the origin by p. In that translation, the origin is translated to the
point p (and, thus, the resulting line contains the point p).

(b) We say the function

R→ Rn

t 7→ p+ tv

is a parametrization of the line passing through p in the direction of v. Its image
is the line, itself. We could use λ or any symbol here instead of t, of course.
We are using t to connote time. We think of the parametrization as giving the
position at each time t of a point traveling along the line.)

(c) Exercise. Try to show that if q is any point on the line {p + λv : λ ∈ R} and
w is any nonzero scalar multiple of v, then

{q + λw : λ ∈ R} = {p+ λv : λ ∈ R}

So the same line may be described in many different ways. (This is not hard to
do: start with an arbitrary element of the set on the left-hand side, and then
show that is contained in the set on the right-hand side.)

Example 3. Give a parametrization of the line through the points (1, 2, 0) and
(0, 1, 1) in R3.

Solution. For the direction, we may choose v = (0, 1, 1)− (1, 2, 0) = (−1,−1, 1). (We
think of v as the vector with head (0, 1, 1) and tail (1, 2, 0)). We then pick any point
on the line, say p = (1, 2, 0). Then our line has the parametrization

t 7→ p+ tv = (1, 2, 0) + t ((0, 1, 1)− (1, 2, 0)) = (1, 2, 0) + t(−1,−1, 1).

Setting t equal to 0 and 1, respectively, shows that this line really does pass throught
the points (1, 2, 0) and (0, 1, 1). Here is an alternative way to write this parametriza-
tion:

t 7→ (1− t, 2− t, t).
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Example 4. A line in R2 can always be expressed as the solution set to a single
linear equation. For example, consider the line

L := {(3, 2) + λ(1, 5) : λ ∈ R}.

A point (x, y) lies on this line L if and only if

(x, y) = (3, 2) + λ(1, 5) = (3 + λ, 2 + 5λ)

for some λ ∈ R. It follows that

(x, y) ∈ L⇐⇒ x = 3 + λ and y = 2 + 5λ for some λ

⇐⇒ x− 3 = λ and
1

5
(y − 2) = λ for some λ

⇐⇒ x− 3 =
1

5
(y − 2)

⇐⇒ 5x− 15 = (y − 2)

⇐⇒ 5x− y = 13.

So the line L is the set of solutions to 5x− y = 13.

Example 5. A line in R3 is always the solution set to a system of two linear
equations. For example, consider the line through the points (1, 0, 2) and (3, 1,−1),
parametrized by

t 7→ (1, 0, 2) + t ((3, 1,−1)− (1, 0, 2)) = (1, 0, 2) + t(2, 1,−3).

We would like to find a system of two linear equations whose solution set is this line.
A linear equation in R3 has the form

ax+ by + cz = d.

We would like to find a, b, c, d so that the solution set for this equation contains the
points (1, 0, 2) and (3, 1,−1). It turns out that this will force the whole line to be
contained in the solution set. To contain these points, we need

a + 2c = d

3a+ b− c = d.

To solve this system, we first put it in reduced row echelon form by substracting 3
times the first equation from the second to get

a + 2c = d

b− 7c = −2d.
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Solve for the pivot variables:
a = −2c+ d

b = 7c− 2d.

To find two independent solutions2, we first set (c, d) = (1, 0), in which case

a = −2, b = 7, c = 1 and d = 0.

We stick these values into ax+ by + cz = d to get our first linear equation

−2x+ 7y + z = 0.

Next we set (c, d) = (0, 1) to get

a = 1, b = −2, c = 0 and d = 1

with corresponding linear equation

x− 2y = 1.

In sum, our line is the solution set to the system

−2x + 7y + z = 0

x− 2y = 1.

The reader should check that our original points, (1, 0, 2) and (3, 1,−1) are both
solutions to this system.

Definition (plane in Rn). Let p, v, w ∈ Rn. Suppose that v and w are nonzero and
that neither is a scalar multiple of the other. Then{

p+ λv + µw : (λ, µ) ∈ R2
}

is the plane in Rn containing p and with directions3 v and w.

The plane in the above definition has the parametrization

R2 → Rn

(s, t) 7→ p+ sv + tw.

Example 6. Find the plane P through the points (0, 2,−1), (4, 2, 1), and (1, 0, 1).
Describe both parametrically and as the solution set to a single linear equation.

2The precise meaning of independence is left for later.
3The word “directions” here is not quite standard but will do for now
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Solution. To find the directions, we fix any of the three points, say (4, 2, 1), and we
consider the two arrows having this point as their tail and (0, 2,−1) and (1, 0, 1) as
their heads:

v = ((0, 2,−1)− (4, 2, 1)) = (−4, 0,−2)

w = ((1, 0, 1)− (4, 2, 1)) = (−3,−2, 0).

Geometrically, we have the following picture for these directions:

(4, 2, 1)

(0, 2,−1)

(1, 0, 1)v

w

So a parametric description of the line is

{(4, 2, 1) + λ(−4, 0, 2) + µ(−3,−2, 0) : λ, µ ∈ R} .

or
{(4− 4λ− 3µ, 2− 2µ, 1 + 2λ) : λ, µ ∈ R} .

As an aside: this parametric description is great for drawing the plane using a com-
puter. For instance, the Sage code for plotting this plane could be:

s,t = var("s,t")

parametric_plot3d((4-4*s-3*t,2-2*t,1+2*s),(s,-1,1),(t,-1,1))

We would now like to describe the plane P as the solution set of a single linear
equation. That equation will have the form

ax+ by + cz = d

for some a, b, c, d ∈ R. Our job is to find a, b, c, d. (Scaling an equation does not
change its solution set, so our solution will only be unique up to such scaling.) For P
to contain (0, 2,−1), (4, 2, 1), and (1, 0, 1), we need

2b− c = d

4a+ 2b + c = d

a + c = d.
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Reducing to row echelon form and solving for pivot variables, we find

a = −d

b =
3

2
d

c = 2d.

We are free to choose any nonzero value for d (again: our solution is only unique up
to scaling). We choose d = 2 (to get rid of the denominator of 2). Therefore, the
plane P is the solution set to the equation

−2x+ 3y + 4z = 2.



Week 2, Wednesday: Vector spaces

Let F be a field, e.g., Q, R, C, Z/2Z (but not Z).

Definition. A vector space over F is a set V with two operations

vector addition: +: V × V → V

(v, w) 7→ v + w

scalar multiplication: +: F × V → V

(a, v) 7→ av

such that the following hold for all x, y, z ∈ V and a, b ∈ F :

(a) x+ y = y + x (commutativity of addition).

(b) (x+ y) + z = (x+ y) + z (associativity of addition).

(c) There exists 0 ∈ V such that 0 + w = w for all w ∈ V .

(d) There exists −x ∈ V such that x+ (−x) = 0.

(e) For 1 ∈ F , we have 1 · x = x.

(f) (ab)x = a(bx) (associativity of scalar multiplication).

(g) a(x+ y) = ax+ ay (distributivity).

(h) (a+ b)x = ax+ bx (distributivity).

Remark. Rules 1–4 provide the additive structure and say that under addition V
forms an abelian group. Rules 5–8 deal with the second operation, scalar multiplica-
tion. Together, they provide a linear structure for the set V .

23
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Exercise. Let v be an element of a vector space. Prove that (−1)v = −v.

Example. Let F n = F × · · · × F︸ ︷︷ ︸
n times

= {(a1, . . . , an) : ai ∈ F for i = 1, . . . , n} with the

operations

(a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn)

c(a1, . . . , an) := (ca1, . . . , can)

for all (a1, . . . , an), (b1, . . . , bn) ∈ F n and c ∈ F . Then F n is a vector space.

Special cases:

(a) F = R and n = 2. This gives R2 with its usual linear structure. Addition is
given by the “parallelogram rule” and scalar multiplication scales length:

u

v

u+ v

u

3u

.

Here are examples of the vector space axioms in the special case V = R2:

1. commutativity of +:

(6, 3) + (−2, 4) = (4, 7) = (−2, 4) + (6, 3);

2. associativity of +:

((6, 3) + (−2, 4)) + (0, 2) = (4, 7) + (0, 2)

= (4, 9)

= (6, 3) + (−2, 6)

= (6, 3) + ((−2, 4) + (0, 2));

3. zero vector:
(0, 0) + (6, 3) = (6, 3);

4. additive inverses:
(6, 3) + (−6,−3) = (0, 0);

5. scaling by 1:
1 · (6, 3) = (1 · 6, 1 · 3) = (6, 3);
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6. associativity of scalar multiplication:

(3 · 2)(6, 3) = 6(6, 3) = (36, 18) = 3(12, 6) = 3 (2 (6, 3)) ;

7. distributivity:
3((6, 3) + (−2, 4)) = 3(4, 7) = (12, 21)

and
3(6, 3) + 3(−2, 4) = (18, 9) + (−6, 12) = (12, 21);

8. distributivity:
(3 + 2)(6, 3) = 5(6, 3) = (30, 15)

and
3(6, 3) + 2(6, 3) = (18, 9) + (12, 6) = (30, 15).

(b) F = Z/3Z and n = 4. For example, (0, 1, 0, 0), (1, 1, 0, 2) ∈ (Z/3Z)4, and

(0, 1, 0, 0) + 2(1, 1, 0, 2) = (0, 1, 0, 0) + (2, 2, 0, 1) = (2, 0, 0, 1).

(c) The field F is a vector space over itself (this is the case of F n with n = 1).

More examples of vector spaces.

(i) The field C is a vector space over R. For all a, b, c, d, t ∈ R, we have

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

t(a+ bi) = ta+ (tb)i.

(ii) The field R is a vector space over Q.

(iii) The set of m× n matrices with entries in F :

Mm×n :=


 a11 . . . a1n

...
am1 . . . amn

 : aij ∈ F for all i, j

 .

has a standard vector space structure. Given A ∈ Mm×n, denote the entry in
its i-the row and j-th column by Aij. Define the vector space operations on
Mm×n as follows:

addition: (A+B)ij := Aij +Bij for all A,B ∈Mm×n;

scalar multiplication: (cA)ij := cAij for all A ∈Mm×n and c ∈ F .
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For example, let F = Q, m = 2, and n = 3. We have

2

(
1 0 3
−1 2 0

)
+ 5

(
0 2 −1
1 0 4

)
=

(
2 10 1
3 4 20

)
.

Calling this last matrix A, we have A1,1 = 2, A1,2 = 10,. . . , A2,3 = 20.

(iv) (Important.) If S is any set, let F S be the set of functions f : S → F . This
function space is naturally an F -vector space (i.e., a vector space with scalar
field F ) with the following operations: for f, g ∈ F S and t ∈ F define f + g
and tf by

addition: (f + g)(s) := f(s) + g(s)

scalar multiplication: (tf)(s) := t(f(s)).

Special cases:

• If S = {1, . . . , n}, then F S is essentially F n. For example, we can think
of (3, 2) ∈ R as the function

f : {1, 2} → R
1 7→ 3

2 7→ 2.

In general, (a1, . . . , an) ∈ F n can be thought of as the function

f : {1, . . . , n} → F

i 7→ ai.

• Similarly, if S = {(i, j) : i = 1, . . . ,m and j = 1, . . . , n}, then F S may
be identified with Mm×n with f ∈ F S corresponding to the matrix A
where Aij = f(i, j).

• If S = {1, 2, 3, . . . }, then F S is the vector space of infinite sequences in F .
For example, the sequence 1, 1/2, 1/4, 1/8, . . . in Q can be identified with
the function f : S → Q defined by f(i) = 1/2i.

Definition. A subset W ⊆ V of a vector space V is a subspace of V is it is a vector
space with the operations of addition and scalar multiplication inherited from V .

We will talk about subspaces in the next class.
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Note: Unless otherwise stated, from now on V will denote a vector space over a
field F .

The over-arching goal of the next several classes is to define the notions of dimension
and isomorphism and show that every finite-dimensional vector space over F is iso-
morphic to the vector space of d-tuples, F d, where d is the dimension. Today’s class
lays some of the groundwork for reaching that goal.

Definition. Let S be a nonempty subset of V . Then v ∈ V is a linear combination
of vectors in S if there exist u1, . . . , un ∈ S and a1, . . . , an ∈ F (for some n) such that

v =
n∑
i=1

aiui = a1u1 + · · ·+ anun.

Example. Let S = {(3, 2), (2,−1)} ⊂ R. Is (−1, 4) a linear combination of vectors
in S? In other words, do there exist a, b ∈ R such that

a(3, 2) + b(2,−1) = (−1, 4)?

Since a(3, 2) + b(2,−1) = (3a+ 2b, 2a− b), the above requirement is equivalent to the
existence of a, b ∈ R such that

3a + 2b = −1

2a− b = 4,

a system of linear equations! Apply our algorithm to look for solutions:(
3 2 −1
2 −1 4

)
r1→r1−r2−−−−−−→

(
1 3 −5
2 −1 4

)
r2→r2−2r1−−−−−−→

(
1 3 −5
0 −7 14

)
r2→−

1
7
r2

−−−−−→

(
1 3 −5
0 1 −2

)
r1→r1−3r2−−−−−−→

(
1 0 1
0 1 −2

)
.

27
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Thus, a = 1 and b = −2. Check:

1 · (3, 2)− 2(2,−1) = (−1, 4). X

So (−1, 4) is a linear combination of the two given vectors. (If it were not, we would
have had an inconsistent system, i.e., a system with no solutions.)

Definition. Let S be a nonempty subset of V . The span of S, denoted Span(S), is
the set of all linear combinations of elements of S. By convention Span ∅ := {0}, and
we say that 0 is the empty linear combination.

Example. In R2,
Span {(1, 1)} = {(a, a) : a ∈ R} .

In R3,

Span {(1, 0, 0), (0, 1, 0)} = {a(1, 0, 0) + b(0, 1, 0) : a, b ∈ R} = {(a, b, 0) : a, b ∈ R} .

Note that the same set can be spanned by different sets of vectors, for instance,

Span {(1, 0, 0), (0, 1, 0)} = Span {(1, 0, 0), (0, 2, 0)}
= Span {(1, 0, 0), (0, 1, 0), (2, 3, 0)} .

A point in R3 is in any of these sets if and only if its third component is 0.

Definition. A subset W ⊆ V is a subspace of V if W is a vector space itself with
the operations of addition and scalar multiplication inherited from V .

Proposition. W ⊆ V is a subspace of V if and only if

(a) 0 ∈ W
(b) W is closed under addition (x, y ∈ W ⇒ x+ y ∈ W )

(c) W is closed under scalar multiplication (c ∈ F and w ∈ W ⇒ cw ∈ W ).

Proof. Exercise. Part 1 is there to ensure that W is nonempty. (Note that Part
2 and Part 3 are vacuously true for the empty set, and yet the empty set is not a
subspace because of Part 1.) �

Examples.

(a) W = {(a, 0) : a ∈ R} is a subspace of R2.

Proof. Letting a = 0, we see (0, 0) ∈ W . If (a, 0), (b, 0) ∈ W , then (a, 0) +
(b, 0) = (a + b, 0) ∈ W . If c ∈ R and (a, 0) ∈ W , then c(a, 0) = (ca, 0) ∈ W .
Thus, W is a subspace of R2. �
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(b) Let

V = {f : R→ R : f is continuous} ,
W = {f : R→ R : f is differentiable} .

Both V and W are subspaces of the vector space RR of functions from R to R
(recall our earlier notation F S for functions from a set S to a field F ), and W is
a subspace of V .

(c) Let W = {(a, b) ∈ R2 : ab = 0}. So W is the union of the two coordinate axes
in R2. Each of these coordinate axes is a subspace of R2, but W is not. For
instance, (1, 0), (0, 1) ∈ W , but (1, 0) + (0, 1) = (1, 1) /∈ W . So W is not closed
under addition.

(d) {0} and V are always subspaces of V . The empty set ∅ is not a subspace (since
it does not contain 0).

Proposition. If W1 and W2 are subspaces of V , so is W1 ∩W2.

Proof. Since W1 and W2 are subspaces, we have 0 ∈ Wi for i = 1, 2. Hence,
0 ∈ W1 ∩W2. If u, v ∈ W1 ∩W2, then u, v ∈ Wi for i = 1, 2. Hence, u + v ∈ Wi for
i = 1, 2. Similarly, for each λ ∈ F ,

u ∈ W1 ∩W2 ⇒ u ∈ W1 and u ∈ W2

⇒ λu ∈ W1 and λu ∈ W2

⇒ λu ∈ W1 ∩W2.

�

Proposition. Let S be a subset of V . Then:

(a) Span(S) is a subspace of V .

(b) If W ⊆ V is a subspace and S ⊆ W , then Span(S) ⊆ W . (In other words: a sub-
space is closed under the process of taking linear combinations of its elements.)

(c) Every subspace of V is the span of some subset of V .

Proof. 1. If S = ∅, then Span(S) = {0}, which is a subspace of V . Otherwise, we will
show 0 ∈ Span(S) and Span(S) is closed under addition and scalar multiplication.
Since S 6= ∅, there exists some u ∈ S. Then 0 · u is a linear combination of elements



Week 2, Friday 30

in S, and 0 · u = 0 (the first 0 in this equation is in F , and the second is in V ).
Hence, 0 ∈ Span(S). Now let x, y ∈ Span(S) so that

x = a1u1 + · · ·+ amum

y = b1v1 + · · ·+ bnvn

for some ai, bi ∈ F and ui, vi ∈ S. Then

x+ y = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn ∈ Span(S)

and for each λ ∈ F ,

λx = λ(a1u1 + · · ·+ amum) = (λa1)u1 + · · ·+ (λmam)um ∈ Span(S).

2. Take x ∈ Span(S). Then x = a1u1 + · · · + amum for some ai ∈ F and ui ∈ S.
Since S ⊆ W , we have ui ∈ W for all i, and since W is a subspace, it is closed under
vector addition and scalar multiplication. Therefore, x ∈ W .

3. Span(W ) = W . �

Definition. A subset S ⊆ V generates a subspace W if Span(S) = W .

Examples.

(a) {1, x, x2, . . . , } generates P (F ), the vector space of polynomials in one variable
over F . More commonly, this vector space is denoted F [x].

(b) {(1, 0), (0, 1)} generates R2. So do {(1, 0), (0, 1), (3,−2)} and {(1, 1), (0, 1)}.

(c) The i-the standard basis vector for F n is ei := (0, . . . , 0, 1, 0, . . . , 0), the vector
whose only nonzero entry is in the i-th component. We have that {e1, . . . , en}
generates F n.
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In today’s lecture, we start by proving a simple (but useful) results about spanning
sets. We then present several examples of subspaces and spanning sets.

Recall the definitions presented last time:

Definition. Let S be a nonempty subset of V . Then v ∈ V is a linear combination
of vectors in S if there exist u1, . . . , un ∈ S and a1, . . . , an ∈ F (for some n) such that

v =
n∑
i=1

aiui = a1u1 + · · ·+ anun.

Definition. Let S be a nonempty subset of V . The span of S, denoted Span(S), is
the set of all linear combinations of elements of S. By convention Span ∅ := {0}, and
we say that 0 is the empty linear combination.

Lemma. Let V be a vector space over F , let S ⊆ V , and let v ∈ V . Then

Span (S ∪ {v}) = Span(S) ⇔ v ∈ Span(S).

Proof. (⇒) If Span (S ∪ {v}) = Span(S), then since v ∈ Span (S ∪ {v}), it follows
that v ∈ Span(S).

(⇐) Suppose that v ∈ Span(S). We wish to show that Span (S ∪ {v}) = Span(S).
Suppose that w ∈ Span(S ∪ {v}). Then we can write

w = a1s1 + · · ·+ aksk + bv

for some s1, . . . , sk ∈ S and some a1, . . . , ak, b ∈ F . We are given that v ∈ Span(S).
Hence,

v = c1t1 + · · ·+ c`t`

for some t1, . . . , t` ∈ S and some c1, . . . , c` ∈ F . Substituting into the previous
equation, we see

w = a1s1 + · · ·+ aksk + b(c1t1 + · · ·+ c`t`)

31
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= a1s1 + · · ·+ aksk + bc1t1 + · · ·+ bc`t`

∈ Span(S).

We have shown that Span (S ∪ {v}) ⊆ Span(S). The opposite inclusion also holds
since one is easily sees that

S ⊆ S ∪ {v} ⇒ Span(S) ⊆ Span(S ∪ {v}).

We now move on to examples of subspaces and spanning sets.

Example. Recall from the reading that Pk(F ) is the vector space of polynomials of
degree at most k with coefficients in F . Another, more standard, notation for this
vector space is F [x]≤k. We have that

Pk(F ) = F [x]≤2 = Span{1, x, . . . , xk}.

Now let
S =

{
x2 + 3x− 2, 2x2 + 5x− 3

}
⊂ R[x]≤2.

Is −x2 − 4x+ 4 ∈ Span(S)?

Solution. We are looking for a, b ∈ R such that

−x2 − 4x+ 4 = a(x2 + 3x− 2) + b(2x2 + 5x− 3),

in other words, such that

−x2 − 4x+ 4 = (a+ 2b)x2 + (3a+ 5b)x+ (−2a− 3b).

So we need to see if the following system of linear equations has a solution:

a+ 2b = −1

3a+ 5b = −4

−2a− 3b = 4.

Applying Gaussian elimination, we find 1 2 −1
3 5 −4
−2 −3 4

  

 1 0 0
0 1 0
0 0 1

 .

We see that the system is inconsistent, i.e., it has no solutions. So −x2 − 4x + 4 /∈
Span(S).
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Definition. Let S be any set, and consider the function space F S := {f : S → F}.
For each s ∈ S, define the characteristic function χs ∈ F S for s by

χs : S → F

t 7→

{
1 if t = s

0 otherwise.

Example. Let S = {1, 2, 3}, and consider the function f : S → R given by f(1) =
−1, f(2) = π, and f(3) = 16. Then we can write f as a linear combination of
characteristic functions:

f = −χ1 + πχ2 + 16χ3.

For instance,

f(2) = (−χ1 + πχ2 + 16χ3)(2)

= −χ1(2) + πχ2(2) + 16χ3(2)

= −0 + π · 1 + 16 · 0 = π.

In this way, if S is finite, then {χs : s ∈ S} generates F S. On the other hand, if S is
infinite, things are more complicated. For instance, consider the case where S = N =
{0, 1, 2, . . . }. Then RN is the vector space of infinite real sequences. For instance, the
sequence 1, 1/2, 1/4, /8, . . . is the function f ∈ RN given by f(i) := 1/2i. If we try to
write f as a linear combination of characteristic functions, we would have

f = χ0 +
1

2
χ1 +

1

4
χ2 +

1

8
χ3 + · · · ,

an infinite sum. However, by definition, the span of a set is the collection of all finite
linear combinations of elements in the set. Infinite linear combinations like those
above involve questions of convergence, and we are not concerned with those issues
at the moment.

Definition. A linear equation of the form a1x1 + · · · + anxn = 0 where ai ∈ F is
called homogeneous.

Proposition. The solution set to a system of homogeneous linear equations in n
unknowns and with coefficients in F is a subspace of F n.

Proof. First note that the zero vector satisfies any homogeneous linear equation. So
the solution set is nonempty. Next, let u = (u1, . . . , un) and v = (v1, . . . , vn) be
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solutions to a system of homogeneous linear equations, and let a1x1 + · · ·+ anxn = 0
be any equation in the system. Thus,

a1u1 + · · ·+ anun = 0

a1v1 + · · ·+ anvn = 0.

Now let λ ∈ F and consider

u+ λv = (u1 + λv1, . . . , un + λvn).

The following calculation shows that u+ λv is also a solution to the equation

a1(u1 + λv1) + · · ·+ an(un + λvn) = a1u1 + · · ·+ anun + λ(a1v1 + · · ·+ anvn)

= 0 + λ · 0 = 0.

Terminology. Since the solution set to a system of homogeneous linear equations is
a subspace, we usually refer to the solution set as the solution space for the system.

Example. Writing a solution to a system of homogeneous linear equations in vector
form yields a set of generators for the solution space. For example, consider the
system

x + z + w = 0

2x+ y − w = 0

3x+ y + z = 0.

We solve the system by performing Gaussian elimination (intermediary steps omit-
ted):  1 0 1 1 0

2 1 0 −1 0
3 1 1 0 0

  

 1 0 1 1 0
0 1 −2 −3 0
0 0 0 0 0

 .

Converting back into equations and solving for the leading (pivot) variables gives

x = −z − w
y = 2z + 3w.

So the set of solutions (in parametric form) is

{(−z − w, 2z + 3w, z, w) : z, w ∈ R} ,
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or, written in vector form,z

−1

2
1
0

+ w


−1

3
0
1

 : z, w ∈ R

 = Span



−1

2
1
0

 ,


−1

3
0
1


 .

The solution space is generated by two vectors.
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Definition. A set S ⊂ V is linearly dependent if there exist distinct1 u1, . . . , un ∈ S,
for some n ≥ 1, and scalars a1, . . . , an, not all zero, such that

a1u1 + · · ·+ anun = 0.

We call the above expression a non-trivial dependence relation among the ui.

Example. The empty set is not linearly dependent.

Example. If 0 ∈ S, then S is linearly dependent. For instance, 1 · 0 = 0 is a
non-trivial dependence relation.

Example. Let S = {(1,−1, 0), (−1, 0, 2), (−5, 3, 4)} ⊂ R3. Is S linearly dependent?
We look for a1, a2, a3 ∈ R such that

a1(1,−1, 0) + a2(−1, 0, 2) + a3(−5, 3, 4) = (0, 0, 0),

i.e., such that
(a1 − a2 − 5a3,−a1 + 3a3, 2a2 + 4a3) = (0, 0, 0).

So we are looking for a solution to the system of linear equations

a1 − a2 − 5a3 = 0

−a1 + 3a3 = 0

2a2 + 4a3 = 0.

Apply our algorithm: 1 −1 −5 0
−1 0 3 0

0 2 4 0

 r2→r2+r1−−−−−−→

 1 −1 −5 0
0 −1 −2 0
0 2 4 0

 r2→−r2−−−−→

1Note the easily forgotten but necessary word “distinct”, here.

36
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 1 −1 −5 0
0 1 2 0
0 2 4 0

 r1→r1+r2−−−−−−→
r3→r3−2r2

 1 0 −3 0
0 1 2 0
0 0 0 0

 .

Converting back to a system of equations and solving for the pivot variables gives

a1 = 3a3, a2 = −2a3,

and a3 is arbitrary. Take a3 = 1 to get the solution a1 = 3, a2 = −2, and a3 = 1:

3(1,−1, 0)− 2(−1, 0, 2) + (−5, 3, 4) = (0, 0, 0).

Therefore, these vectors are linearly dependent.

Proposition 1. Let S ⊆ V . Then S is linearly dependent if and only if there
exists v ∈ S such that v is a linear combination of vectors in S \ {v}, i.e., if and only
if v ∈ Span(S \ {v}).

Proof. First note that we may assume S 6= ∅ since the empty set is not linearly
dependent.

(⇒) Suppose a1u1 + · · · + anun = 0 for distinct ui ∈ S and ai ∈ F , not all zero.
Without loss of generality, we may assume that a1 6= 0. In that case, we have

u1 = −a2
a1
u2 −

a3
a1
u3 − · · · −

an
a1
un,

expressing u1 as a linear combination of elements in S \ {u1}. Note the special case
where S = {0}. The result still holds in that case since {0} = Span(∅). By definition,
the empty linear combination is 0.

(⇐) Say v = a1u1 + · · ·+ anun with distinct ui ∈ S \ {v} and v ∈ S. Then

a1u1 + · · ·+ anun − v = 0

shows that S is linearly dependent.

Definition. A set S ⊂ V is linearly independent if it is not linearly dependent.
This means that for all n ≥ 1 and distinct u1, . . . , un ∈ S, if a1u1 + · · · + anun = 0
for some ai ∈ F , then a1 = · · · = an = 0. (In particular, the empty set is linearly
independent.)

Remark. We say there is a linear relation among vectors u1, . . . , un if there exist
ai ∈ F such that a1u1 + · · · + anun = 0. The linear relation is trivial if all ai = 0.
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Thus, a subset S of V is linearly independent if every linear relation distinct elements
of S is trivial.

IMPORTANT. To prove that a set of (distinct) vectors S = {v1, . . . , vk} is linearly
independent start by writing the following:

Suppose that
a1v1 + · · ·+ akvk = 0

for some a1, . . . , ak ∈ F .

The goal is then to use some knowledge you are given about the vectors v1, . . . , vk to
show that the relation is trivial, i.e., ai = 0 for all i.

AVOID. Another way to prove that a set of vectors S = {v1, . . . , vk} is linearly
independent is to suppose that some vi is a linear combination of the vectors in
S \ {vi} or to suppose that there is some nontrivial linear combination of elements
in S, and then show a contradiction arises. Whenever tempted to give such a proof,
check to see if the standard proof, described just above, would be clearer (as it almost
always will).

Examples.

• The set {u} is linearly independent for any nonzero u ∈ V : if λu = 0 for
some λ 6= 0, then scaling by 1/λ would give u = 0. But we are supposing u 6= 0.
(Here is a case where the indirect proof of independence seems warranted.)

• S = {(1,−1, 0), (−1, 0, 2), (0, 1, 1)} ⊂ R is linearly independent. To see this, we
follow the standard proof. Suppose that

a(1,−1, 0) + b(−1, 0, 2) + c(0, 1, 1) = 0,

which means
a− b = 0

−a + c = 0

2b+ c = 0.

Apply our algorithm (I’ll just show the result of row reduction): 1 −1 0 0
−1 0 1 0

0 2 1 0

 
 1 0 0 0

0 1 0 0
0 0 1 0

 .

Thus, the only solution is a = b = c = 0.
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• The set S = {1 + x, 1 + x + x2} ⊂ P2(R) = R[x]≤2 is linearly independent. To
see this, suppose that

a(1 + x) + b(1 + x+ x2) = 0

for some a, b ∈ R. It follows that

(a+ b) + (a+ b)x+ bx2 = 0,

and, therefore, a + b = 0 (the coefficient the constant term or of the x-term)
and b = 0 (the coefficient of the x2-term). It then follows that a = b = 0.

Problem (leading to an important algorithm). Let

S = ((2, 0, 0), (0, 1, 0), (2, 2, 0), (0, 3, 1), (3, 0, 1)) .

Find a linearly independent subset of S and write the remaining vectors as linear
combinations of vectors in that subset.

Solution. Look for linear relations

c1(2, 0, 0) + c2(0, 1, 0) + c3(2, 2, 0) + c4(0, 3, 1) + c5(3, 0, 1) = (0, 0, 0).

Convert the above relation to as system of three homogeneous linear equations in
c1, c2, c3, c4, c5 and solve: 2 0 2 0 3 0

0 1 2 3 0 0
0 0 0 1 1 0

 
 1 0 1 0 3

2
0

0 1 2 0 −3 0
0 0 0 1 1 0

 .

(Note that the first matrix has the vectors in S as columns.) So the solution space is(
−c3 −

3

2
c5,−2c3 + 35, c3,−c5, c5 : c3, c5 ∈ R

)
,

or, in parametric formc3

−1
−2

1
0
0

+ c5


−3

2

3
0
−1

1

 : c3, c5 ∈ R

 .
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Let T be the set of columns in our original matrix with the same indices as those
for the non-free (i.e., pivot or leading) variables in the row-reduced matrix. In other
words,

T =


 2

0
0

 ,

 0
1
0

 ,

 0
3
1

 .

We claim that T is linearly independent. Suppose there is a linear relation (switching
to row notation for convenience):

a(2, 0, 0) + b(0, 1, 0) + c(0, 3, 1) = 0.

To show that a = b = c = 0 is the only solution, we convert to a matrix and row-
reduce as usual:  2 0 0

0 1 3
0 0 1

 
 1 0 0

0 1 0
0 0 1

 .

Therefore, we must have a = b = c = 0, as claimed. Important: In fact, there was
no need to do that last computation since we have already done it. To see that, go
back to our original row-reduction 2 0 2 0 3 0

0 1 2 3 0 0
0 0 0 1 1 0

 
 1 0 1 0 3

2
0

0 1 2 0 −3 0
0 0 0 1 1 0


and only pay attention to the first, second, and fourth columns. So the verification
that T is linearly independent was secretly guaranteed by its construction.

It remains to be shown that the remaining columns (those corresponding to the free
variables), i.e., (2, 2, 0) and (3, 0, 1), in row notation) are in the span of T . We have
found all solutions to

c1(2, 0, 0) + c2(0, 1, 0) + c3(2, 2, 0) + c4(0, 3, 1) + c5(3, 0, 1) = (0, 0, 0) (7.1)

and found that c3 and c5 are free variables. To see that (2, 2, 0) is in the span of T , find
the solution to our system for which (c3, c5) = (1, 0), then solve for (2, 2, 0) in (7.1).
The solution in this case is 

c1
c2
c3
c4
c5

 =


−1
−2

1
0
0
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Therefore,

−(2, 0, 0)− 2(0, 1, 0) + 1 · (2, 2, 0) + 0 · (0, 3, 1) + 0 · (3, 0, 1) = (0, 0, 0),

and, thus,
(2, 2, 0) = (2, 0, 0) + 2(0, 1, 0).

Similarly, to show (3, 0, 1) is in the span of T , we set (c3, c5) = (0, 1). The corre-
sponding solution is 

c1
c2
c3
c4
c5

 =


−3

2

3
0
−1

1


Therefore,

−3

2
(2, 0, 0) + 3(0, 1, 0) + 0 · (2, 2, 0)− 1 · (0, 3, 1) + 1 · (3, 0, 1) = (0, 0, 0),

Solving for (3, 0, 1) gives

(3, 0, 1) =
3

2
(2, 0, 0)− 3(0, 1, 0) + (0, 3, 1).

We summarize the underlying important algorithm: Let S = {v1, . . . , vk} ∈ F n. To
find a linearly independent subset T of S such that Span(T ) = Span(S):

• Let M be the matrix with columns v1, . . . , vk.

• Compute M ′, the row-reduced form of M .

• Let j1, . . . , jd be the indices of the pivot columns of M ′ (the ones containing the
leading 1s).

• Set T = {vj1 , . . . , vjd}.

Note: The set T is a subset of the columns of M not of M ′!

The elements of S\T correspond to the free variables, and we can write these elements
as linear combinations of the elements of T by setting each free variable in turn equal
to 1 and setting the remaining free variables equal to 0.

We end with a result of fundamental importance:

Theorem. Let S ⊆ V be linearly independent, and let v ∈ Span(S). Then v
has a unique expression as a linear combination of elements of S. In other words,
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if v =
∑k

i=1 aiui and v =
∑`

i=1 biwi for some nonzero ai, bi ∈ F and some distinct
ui ∈ S and distinct wi ∈ S, then up to re-indexing, we have k = `, ui = wi, and ai = bi
for all i.

Proof. Say v =
∑n

i=1 aiui and v =
∑n

i=1 biui for some ai, bi ∈ F and ui ∈ S. (By
letting some ai and bi equal zero, these expressions represent two arbitrary represen-
tations of v as linear combinations of elements of S, i.e., we can use the same ui and n
for both expressions.) It follows that

0 = v − v =
n∑
i=1

aiui −
n∑
i=1

biui =
n∑
i=1

(ai − bi)ui.

Since S is linearly independent, it follows that ai − bi = 0 for all i. The result
follows.

Example. The previous result does not hold if S is linearly dependent. For instance,
consider the set S = {(1, 1), (2, 2)} ⊂ R. Then

(3, 3) = (1, 1) + (2, 2) = 2(1, 1) +
1

2
(2, 2) = 3(1, 1) + 0(2, 2) = etc.

Exercise. Prove that the converse of the previous proposition holds: if each element
of SpanS can be expressed uniquely as a linear combination of elements of S, then S
is linearly independent.
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Definition. A subset B ⊂ V is a basis if it is linearly independent and spans V .
An ordered basis is a basis whose elements have been listed as a sequence: B =
〈b1, b2, . . . 〉.1

Warning: Our book defines a basis to be what we are calling an ordered basis. That’s
not standard, and there are problems with that idea when talking about infinite-
dimensional vector spaces, which we will not go into here. We will, however, use the
book’s notation of “〈” and “〉” to denote an ordered basis. Thus, for us, the word
basis will mean “unordered basis”, and we will try to be careful to say “ordered basis”
when relevant (but will sometimes forget).

Examples.

(a) The standard ordered basis for F n is 〈e1, . . . , en〉 where the i-th standard basis
vector is ei = (0, . . . , 0, 1, 0, . . . , 0), the vector with i-th component 1 and all
other components 0. For instance, the standard ordered basis for F 3 is

〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉.

Here is another possible ordered basis for F 3:

〈(1, 0, 0), (0, 1, 0), (1, 1, 1)〉.

Exercise: check that the above vectors are linearly independent and span F 3.

(b) One ordered basis for the vector space P3(F ) = F [x]≤3 of polynomials of degree
most three is

〈1, x, x2, x3〉.
1Every vector space has a basis—we will prove this in the finite-dimensional case. An infinite-

dimensional vector space may not have a countable basis, i.e., one that can be indexed by the natural
numbers. There is a link to a supplemental article at our course homepage, if you would like to
know more.

43



Week 3, Friday 44

(c) One ordered basis for, M2×3(F ), the vector space of 2×3 matrices over a field F ,
is

M1 =

(
1 0 0
0 0 0

)
, M2 =

(
0 1 0
0 0 0

)
, M3 =

(
0 0 1
0 0 0

)
,

M4 =

(
0 0 0
1 0 0

)
, M5 =

(
0 0 0
0 1 0

)
, M6 =

(
0 0 0
0 0 1

)
.

These matrices span M2×3(F ):(
a b c
d e f

)
= aM1 + bM2 + cM3 + dM4 + eM5 + fM6.

To see they are linearly independent, suppose the above sum is 0, i.e., the zero
matrix. Then we must have a = b = c = d = e = f = 0.

Last time, we showed the following proposition:

Proposition 1 from previous lecture. Let S ⊆ V . Then S is linearly dependent if
and only if there exists v ∈ S such that v is a linear combination of vectors in S \{v},
i.e., if and only if v ∈ Span(S \ {v}).

We use this result to prove the following:

Proposition 1. Any finite subset S of V has a linearly independent subset with the
same span. In other words, if S is a finite set, then there is a subset of S that is a
basis for Span(S).

Proof. If S is linearly independent, we are done. If not, then by Proposition 1 from
the previous lecture, there exists v ∈ S such that v ∈ Span(S \ {v}). It follows
that Span(S) = Span(S \{v}). If S \{v} is linearly independent, we are done. If not,
repeat the above step. The process will end eventually since S is finite. We are OK
even if the process ends at the empty set since the empty set is linearly independent.
(For instance, if S = {0}, our process would end at ∅.)

In the above, we create a basis for Span(S) by discarding elements of S. Another
possibility is to start at the empty set and start adding elements S that are linearly
independent of those we have so far. This follows from:

Proposition 2. If T ⊂ V is linearly independent and v ∈ V \ T , then T ∪ {v} is
linearly dependent if and only if v ∈ Span(T ).
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Proof. (⇒) Suppose that v ∈ V \ {v} and that T ∪ {v} is linearly dependent. Then
we may write

av + a1u1 + · · ·+ anun = 0 (?)

for some a, a1, . . . , an ∈ F , not all zero, and distinct ui ∈ T . We can always assume
that v appears in this expression by taking a = 0, if necessary. But, in fact, a 6= 0
since otherwise (?) would be a linear relation among distinct elements of T . Since T
is linearly independent, this would mean that all the ai = 0, in addition to a = 0.
However, we know that at least one of these scalars in nonzero.

Thus, it must be that a 6= 0. We can then solve for v in (?):

v = −ai
a
u1 − · · · −

an
a
un ∈ Span(T ).

(⇐) Suppose that v ∈ Span(T ). Then

v = a1u1 + · · ·+ anun

for some ai ∈ F and ui ∈ T . Since v /∈ T , it follows that

a1u1 + · · ·+ anun + (−1) · v = 0

is a nontrivial relation among elements of T∪{v}. So T∪{v} is linearly dependent.

Alternate proof of Proposition 1. We are starting with a finite set S and looking for
a subset T of S that is linearly independent and generates V = Span(S). If S = ∅ or
S = {0}, we take T = ∅ and are done. If not, there exists a nonzero element u1 ∈ S,
and we set T = {u1}. If Span(T ) = Span(S), we are done. If not, then there
exists u2 ∈ S such that u2 6∈ Span(T ). We then append u2 to T . So now T = {u1, u2},
and by Proposition 2, the set T is linearly independent. If Span(T ) 6= Span(S), repeat
to find u3 ∈ S linearly independent of u1 and u2. Etc. Since S is finite, the process
eventually stops.

Example. Let V = (Z/3Z)3, a vector space over Z/3Z.

How many elements are in V ? A point in V has the form (x1, x2, x3), and there are 3
choices for each xi. Hence, the number of elements in V is |V | = 33 = 27.

As an exercise, check that the following is a subspace of V :

W = {(x1, x2, x3) ∈ V : x1 + x2 + x3 = 0} .

How many elements are in W? We have,

W = {(−x2 − x3, x2, x3) : x2, x3 ∈ Z/3Z} .
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As we let x2 and x3 vary, we get 9 elements:

{(0, 0, 0), (2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 1, 1), (0, 2, 1), (1, 0, 2), (0, 1, 2), (2, 2, 2)}.

Let’s try to find a linearly independent generating set for W . Start with v1 := (2, 1, 0).
The span of {v1} has three elements:

0 · (2, 1, 0) = (0, 0, 0)

1 · (2, 1, 0) = (2, 1, 0)

2 · (2, 1, 0) = (1, 2, 0).

Next, note that v2 = (2, 0, 1) is not in Span({v1}). By Proposition 2, we see that S :=
{v1, v2} is linearly independent. We claim Span(S) = W . First, since v1, v2 ∈ W ,
we see Span(S) ⊆ W . Next, by Theorem 1, every element of Span(S) has a unique
expression of the form

a1v1 + a2v2

where a1, a2 ∈ Z/3Z. Hence, | Span(S)| = 32 = 9. Since Span(S) ⊆ W and | Span(S)| =
|W | = 9, it follows that Span(S) = W .

Proposition 3. If B is a basis for V , then every element of V can be expressed
uniquely as a linear combination of elements of B.

Proof. Since B is linearly independent, we’ve already seen that every element in
Span(B) can be written uniquely as a linear combination of elements of B. Since B
is a basis, Span(B) = V .

Definition. Let B = 〈v1, . . . , vn〉 be an ordered basis for V . Given v ∈ V , there are
unique a1, . . . , an ∈ F such that

v = a1v1 + · · ·+ anvn.

The coordinates of v with respect to the basis B are the components of the vec-
tor (a1, . . . , an) ∈ F n. We write

[v]B = (a1, . . . , an).

Examples.

(a) Let v = (x, y, z) ∈ F 3. The coordinates of v with respect to the standard ordered
basis B = 〈e1, e2, e3〉 are (x, y, z) since

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe1 + ye2 + ze3.
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Now consider B′ = 〈(1, 0, 0), (1, 1, 0), (1, 1, 1)〉. Then the coordinates of v with
respect to B′ are (x− y, y − z, z) since

(x, y, z) = (x− y)(1, 0, 0) + (y − z)(1, 1, 0) + z(1, 1, 1).

(b) Recall the ordered basis 〈M1, . . . ,M6〉 for M2×3(F ) defined earlier. Then the
coordinates of the matrix (

a b c
d e f

)
are (a, b, c, d, e, f) ∈ F 6.
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Recall the following from last time:

• A set B is a basis for V if it

– is linearly independent, and

– spans V .

• If B is a basis for V , each element of V can be expressed uniquely as a linear
combination of vectors in B.

• If B = 〈v1, . . . , vn〉 is an ordered basis for V , then the coordinates of v ∈ V with
respect to B are (a1, . . . , an) where

v = a1v1 + · · ·+ anvn.

Example. Find the coordinates of (7,−6) ∈ R2 with respect to the ordered basis
B = 〈(5, 3), (1, 4)〉.

Solution. We need to find a, b ∈ R such that

(7,−6) = a(5, 3) + b(1, 4).

Therefore, we solve the system of equations

5a+ b = 7

3a+ 4b = −6.

Applying our algorithm yields a = 2 and b = −3. So the coordinates of (7,−6) with
respect to B are given by (2,−3). We write

[(7,−6)]B = (2,−3).

Figure 9.1 gives the geometry. The basis vectors are in blue, and the red vectors
indicate how (7,−6) is a linear combination of the basis vectors.
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x

y

2 · (5, 3)

−3 · (1, 4)

(7,−6)

Figure 9.1: The coordinates of (7,−6) with respect to the ordered basis 〈(5, 3), (1, 4)〉.

Remark. Let B = 〈v1, . . . , vn〉 be an ordered basis for a vector space V . Then taking
coordinates defines a bijective (why?) function

φ : V → F n

v 7→ [v]B.

This function has an important property: it preserves linear structure. By this, we
mean the following: let u, v ∈ V and let λ ∈ F , then we claim that

φ(u+ λv) = φ(u) + λφ(v). (9.1)

Note that addition and scalar multiplication happens in V on the left-hand side of this
equation, and they happen in F n on the right-hand side. The fact that φ is bijective
and preserves linear structure means that as vector spaces V and F n are “essentially
the same”. We can be more precise when we introduce linear transformations next
week. For now, let us prove that equation (9.1) holds. We express u and v in terms
of the basis:

u = a1v1 + · · ·+ anvn

v = b1v1 + · · ·+ bnvn.

It follows that
u+ λv = (a1 + λb1)v1 + · · ·+ (an + λbn)vn.
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Then

φ(u+ λv) = [u+ λv]B

= (a1 + λb1, . . . , an + λbn)

= (a1, . . . , an) + λ(b1, . . . , bn)

= [u]B + λ[v]B

= φ(u) + λφ(v).

Definition. A vector space is finite-dimensional if it has a basis with a finite number
of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following vector spaces are finite-dimensional:

– F n (has a basis with n elements)

– Pd(F ) = F [x]≤d (has a basis with d+ 1 elements)

– Mm×n (has a basis with m× n elements)

– C as a vector space over R (basis {1, i}).

The following are infinite-dimensional:

– P(F ) = F [x]

– RR = {f : R→ R}

– {f : R→ R : f is continuous}

– {f : R→ R : f is differentiable}

– R as a vector space over Q

– C as a vector space over Q.

Our goal today is to show that if V is a finite-dimensional vector space, then every
basis for V has the same number of elements. Thus, the following definition makes
sense:

Definition. If V is a finite-dimensional vector space, then the dimension of V ,
denoted dimV or dimF V , if we want to make the scalar field explicit, is the number
of elements in any of its bases.
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Exchange Lemma. Suppose B = {v1, . . . , vn} is a basis for a vector space V over
a field F . Further, suppose that

w = a1v1 + · · ·+ anvn ∈ V (?)

with ai ∈ F , and such that a` 6= 0 for some ` ∈ {1, . . . , n}. Let B′ be the set of
vectors obtained from B by exchanging w for v`, i.e., B′ := (B \{v`})∪{w}. Then B′

is also a basis for V .

Proof. We first show that B′ is linearly independent. For ease of notation, we may
assume that ` = 1, i.e., that a1 6= 0. Suppose we have a linear relation among the
elements of B′:

bw + b2v2 + · · ·+ bnvn = 0

Substituting for w:

0 = b(a1v1 + · · ·+ anvn) + b2v2 + · · ·+ bnvn = ba1v1 + (ba2 + b2)v2 + · · ·+ (ba3 + bn)vn.

Since the vi are linearly independent,

ba1 = ba2 + b2 = · · · = ban + bn = 0.

Since a1 6= 0, it follows that b = 0 and then that b2 = · · · = bn = 0, as well.
Therefore, B′ is linearly independent.

We now show that B′ spans V . First, solve for v1 in (?):

v1 =
1

a1
w − a2

a1
v2 − · · · −

an
a n

.

To see that B′ spans, take v ∈ V . Since B is a basis, v can be written as a linear
combination of B = {v1, . . . , vn}, but then substituting the above expression for v1
will express v as a linear combination of B′ = {w, v2, . . . , vn}, as required:

v = c1v1 + · · ·+ cnvn

=

(
1

a1
w − a2

a1
v2 − · · · −

an
a n

vn

)
+ c2v2 + · · ·+ cnvn

=
1

a1
w +

(
−a2
a1

+ c2

)
v2 + · · ·+

(
−an
a1

+ cn

)
vn.
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Corollary. Suppose B = {v1, . . . , vn} is a basis for a vector space V over a field F .
Further, suppose that w ∈ V is nonzero. Then there exists ` ∈ {1, . . . , n} such that
B′ := (B \ {v`}) ∪ {w} is also a basis for V .

Theorem. In a finite-dimensional vector space, every basis has the same number of
elements.

Proof. Let V be a finite-dimensional vector space. Among all the bases for V ,
let B = {u1, . . . , un} be one of minimal size. Since B has minimal size, we know
that n = |B| ≤ |C|. Therefore C contains at least n distinct vectors w1, . . . , wn and
possibly more. (Our goal is to show that, in fact, C contains no others.)

To take care of a trivial case, suppose B = ∅ (the case n = 0). In that case, we have

V = Span(C) = Span(B) = Span(∅) =
{
~0
}
.

The only linearly independent set whose span is
{
~0
}

is ∅. So in this case, 0 = |C| =
|B|, as desired.

Now suppose that n ≥ 1. We would again like to show that C has the same number
of elements as B. The idea is to start with B, then use the exchange lemma to swap
in the n elements w1, . . . , wn from C, one at a time, maintaining a basis at each step.
To that end, let B0 = B and consider w1 ∈ C. By the exchange lemma, we get a
new basis B1 by swapping w1 with some u` ∈ B0. For ease of notation, let’s suppose
that ` = 1. Therefore, B1 = {w1, u2, . . . , un}. Since B1 is a basis for V , it is linearly
independent and V = Span(B1) = Span(B) = Span(C).

Next, consider w2 ∈ C. Since B1 is a basis, we know w2 ∈ Span(B1), hence, we can
write

w2 = a1w1 + a2u2 + . . . anun

for some ai ∈ F . Since w1 and w2 are linearly independent, at least one of a2, . . . , an
is nonzero. Without loss of generality, suppose a2 6= 0. Then by the exchange
algorithm, B3 := {w1, w2, u3, . . . , un} is a basis. Continuing in this way, we eventually
reach the basis Bn = {w1, . . . , wn} ⊆ C. In fact, we must have Bn = C. Otherwise,
there is a w ∈ C \ Bn. Since Bn is a basis, w ∈ Span(Bn), in other words, w =∑n

i=1 diwi for some di ∈ F . But that can’t happen since C is a basis: it’s elements
are linearly independent. So, in fact, C also has n elements.

Remark. If V is infinite-dimensional, it turns out that any two bases have the same
cardinality. The above proof does not work to prove that, though.
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Last time, we showed that if V is finite-dimensional, then all of its bases have the
same number of elements. Then, by definition, the number of elements in any basis
for V is the dimension of V .

Examples.

– dimF n = n (for instance, {e1, . . . , en} is a basis).

– dimPd(F ) = dimF [x]≤d = d+ 1 (for instance, {1, x, . . . , xd} is a basis).

– dim{(x, y, z) ∈ F 3 : x + y + z = 0} = 2 (for instance, {(1, 0,−1), (0, 1,−1)} is
a basis).

– dimR C = 2 (for instance, {1, i} is a basis).

– dimC C = 1 (for instance, {1} is a basis).

– dim{~0} = 0 (the basis is ∅, which has 0 elements).

Corollary. Let V be a vector space of dimension n. Then

(a) If S ⊆ V is linearly independent, then S has at most n elements.

(b) If S ⊆ V is linearly independent, then S can be completed to a basis for V , i.e.,
there exists a basis containing S as a subset.

(c) If S has n elements, then S is linearly independent if and only if it spans V .

(d) If S spans V , then S has at least n elements.

(e) A basis is a minimal spanning set for V . (Here, “minimal” can mean the set
has no strict subsets that also span V , or it can mean minimal in number of
elements.)
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(f) A basis is a maximal linearly independent subset of V . (Here, “maximal” can
mean there is no strict superset that is also linearly independent, or it can mean
maximal in number.)

Example. Before proving the Corollary, here is an example of its use. Prove
that {(5, 3), (1, 4)} is a basis for R2. Since dimR = 2, we just need to check that these
two vectors are linearly independent (by part (c)). Since neither is a scalar multiple
of the other, we are done.

Proof. (a) Here we repeat the key idea of the proof from last time showing that all
bases have the same number of elements. If S = ∅, we are done. Otherwise,
say S = {s1, . . . , sk} for some k ≥ 1. We know that V has some basis C =
{v1, . . . , vn}. Since V = Span(C), we can write

s1 = a1v1 + · · ·+ anvn.

Since S is linearly independent, s1 6= ~0, and hence, some ai 6= 0. Without loss
of generality, say a1 6= 0. By the exchange lemma, we can swap s1 for v1 in C to
get a new basis C ′ = {s1, v2, v3, . . . , vn}.
If k ≥ 2, since C ′ is a basis, we can write

s2 = b1s1 + b2v2 + · · ·+ bnvn.

Since s1 and s2 are linearly independent, at least one of b2, . . . , bn is nonzero. For
convenience, say b2 6= 0. By the exchange lemma, the set C ′′ = {s1, s2, v3, . . . , vn}
is a basis. We can repeat this process until all elements of S have been swapped
into C, thus showing that k ≤ n, as required.

(b) If V = Span(S), we are done. If not, take v ∈ V \ Span(S). By an earlier result,
S∪{v} is linearly independent. We can repeat this process, but once we reach n
elements, the process stops by part (a).

(c) (⇒) Suppose that S is linearly independent. By part (b), we can complete S
to a basis B. Since dimV = n, we know that |B| = n. So we have S ⊆ B
and |S| = |B| = n. It follows that S = B is a basis, and hence, it spans V .

(⇐) Suppose V = Span(S). We saw in an earlier lecture that there is a linearly
subset of S ′ of S with the same span as S. Since S ′ is linearly independent
and V = Span(S) = Span(S ′), it follows that S ′ is a basis, and hence |S ′| =
dimV = n. Since S ′ ⊆ S and n = |S ′| = |S|, it follows that S ′ = S, and
therefore, S is linearly independent.
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(d) If S is infinite, there is nothing to prove. Otherwise, by removing elements from S
we can find a linearly independent subset S ′ ⊆ S with the same span. Then S ′

is a basis for V and hence has n elements. Since S ′ ⊆ S, we have n = |S ′| ≤ |S|.

(e) HW.

(f) HW.

Example. Prove that {(3, 1, 2), (1, 0,−1), (−1, 2, 4), (1, 3, 0)} ⊂ R3 is linearly depen-
dent.

Solution. Since dimR3 = 3, a linearly independent set has at most 3 elements.

Extra time activity. Let F = Z/3Z, and consider the following twelve points in F 4:

(1, 1, 2, 1) (1, 1, 2, 0) (2, 1, 2, 1)

(1, 1, 0, 1) (2, 0, 1, 0) (1, 0, 1, 1)

(2, 1, 1, 0) (1, 2, 0, 0) (1, 2, 2, 1)

(1, 2, 0, 1) (2, 0, 1, 1) (0, 0, 2, 2)

Goal: find subsets of size three of this array that sum to (0, 0, 0, 0).

All solutions:

• (1, 1, 2, 1), (1, 0, 1, 1), (1, 2, 0, 1)

• (1, 1, 0, 1), (1, 0, 1, 1), (1, 2, 2, 1)

• (2, 1, 1, 0), (1, 2, 0, 1), (0, 0, 2, 2)

Observations:

• Three vectors sum to zero if and only if in each component, the entries are either
all the same or all different. For example, in the solution (2, 0, 0, 1), (2, 0, 1, 2), (2, 0, 2, 0),
the entries in the first component are all 2, the entries in the second component
are all 0, the entries in the third and fourth components are 0, 1, 2—all different.

• If u, v, w is a solution so that u+ v + w = 0, consider the value of

u+ t(v − u)
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as t varies among the element of F . When t = 0, we get u. When t = 1, we
get v, and when t = 2, we get

u+ 2(v − u) = −u+ 2v = −u− v = w,

recalling that 2 = −1 in F = Z/3Z. We may think of t(v− u) as determining a
line through the origin as t varies. So then u + t(v − u) is that line translated
by the vector u. So finding these triples of points whose sum is zero is the same
as finding lines in F 4 containing the three points.
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Relation to the game Set (number-1, shading, color, shape):

(1, 1, 2, 1) (1, 1, 2, 0) (2, 1, 2, 1)

(1, 1, 0, 1) (2, 0, 1, 0) (1, 0, 1, 1)

(2, 1, 1, 0) (1, 2, 0, 0) (1, 2, 2, 1)

(1, 2, 0, 1) (2, 0, 1, 1) (0, 0, 2, 2)
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Row rank and column rank.

Definition. Let A be an m× n matrix over F . The row space of A is the subspace
of F n spanned by its rows, and the column space of A is the subspace of Fm spanned
by its columns. The row rank of A is the dimension of its row space, and the column
rank of A is the dimension of its column space.

Since row operations are reversible, any matrix obtained from a matrix A by per-
forming row operations has the same row space. In particular, the row space of A
is the same as the row space of its reduced echelon form. From the structure of the
reduced echelon form, it’s clear that its nonzero rows form a basis for its row space.
To summarize:

The nonzero rows of the reduced echelon form of A form a basis
for the row space of A.

This gives an algorithm for computing a basis for the row space of a matrix.

Algorithm for computing a basis for the row space and the row rank.
Given an m× n matrix A, compute its reduced echelon form E. Then the rows of E
are a basis for the row space of A. The number of nonzero rows in E is the row rank
of A.

Example. Let

A =

 1 2 0 4
3 3 1 0
7 8 2 4

 .

To compute a basis for the row space of A, compute its reduced echelon form:

A =

 1 2 0 4
3 3 1 0
7 8 2 4

 −→ E =

 1 0 2
3
−4

0 1 −1
3

4

0 0 0 0

 .

58
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So a basis for the row space of A is:{(
1, 0, 2

3
,−4

)
,
(
0, 1,−1

3
, 4
)}
.
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Proposition. Let A be an m× n matrix with columns A1, . . . , An ∈ Fm. Let Ã be
any matrix formed from A by performing row operations, and let Ã1, . . . , Ãn ∈ Fm

be its columns. Let x1, . . . , xn ∈ F be any scalars. Then

x1A1 + · · ·+ xnAn = 0 if and only if x1Ã1 + · · ·+ xnÃn = 0.

Proof. Write out the relation x1A1 + · · ·+ xnAn = 0 longhand:

x1


a11
a21
...
am1

+ · · ·+ xn


a1n
a2n
...

amn

 = 0.

Adding up the left-hand side, we see the relation is equivalent to a solution (x1, . . . , xn)
to the linear system

a11x1 + · · ·+ a1nxn = 0

...
...

...

am1x1 + · · ·+ amnxn = 0.

Or result follows since row operations do not change the set of solutions to a system
of equations. �

Corollary. Let E be the reduced row echelon form of a matrix A, and suppose
the basic (pivot) columns have indices j1, . . . , jr. Then the columns of A indexed
by j1, . . . , jr form a basis for the column space of A.

Proof. For ease of notation, assume j1 = 1, j2 = 2, . . . , jr = r, i.e., the first r columns
of E are the pivot columns. For instance, in the case m = 5, n = 7, and r = 3, the
matrix E would have the form

1 0 0 ∗ ∗ ∗ ∗
0 1 0 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0
0 0 0 0 0 0 0


where the ∗s are arbitrary scalars.

Let E1, . . . , En denote the columns of E, and let A1, . . . , An denote the columns of A.
It is clear that E1, . . . , Er form a basis for the columns space of E. We need to show
that A1, . . . , Ar form a basis for the columns space of A. So we need to show A1, . . . , Ar
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are linearly independent and span the column space of A. For linear independence,
suppose that

x1A1 + · · ·+ xrAr = 0.

for some xi ∈ F . Then, by the Proposition,

x1E1 + · · ·+ xrEr = 0.

Since E1, . . . , Er are linearly independent, it follows that x1 = · · · = xr = 0, as
desired. Next, to show A1, . . . , Ar span the column space of A, it suffices to show
that every other column of A is in the span. So consider a column Aj with j > r.
Since E1, . . . , Er form a basis for the column space of E, we can find scalars c1, . . . , cr
such that

Ej = c1E1 + · · ·+ crEr.

Rewriting this equation, we get

c1E1 + · · ·+ crEr − Ej = 0.

It then follows from the Proposition that

c1A1 + · · ·+ crAr − Aj = 0,

which implies
Aj = c1A1 + · · ·+ crAr − Aj.

So Aj is in the span of A1, . . . , Ar. �

We turn the Corollary into an algorithm:

Algorithm for computing a basis for the column space and the col-
umn rank. Given a matrix A, compute its reduced echelon from E. Say that
columns j1, . . . , jr are the basic columns of E (those corresponding to the non-free
variables—the one that have a single non-zero entry and that entry is equal to 1.
Then columns j1, . . . , jr are a basis for the columns space of A. The column rank
of A is r, the number of basic columns of its reduced echelon form.

WARNING: Be sure to take columns j1, . . . , jk of the orginal matrix, A, not of the
echelon form, E. (So computing a basis for the row space is little easier, since it does
not require this last step.)

Example: In the previous example, we computed the reduced echelon form of a
matrix:

A =

 1 2 0 4
3 3 1 0
7 8 2 4

 −→ E =

 1 0 2
3
−4

0 1 −1
3

4

0 0 0 0

 .
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The first two columns of E are its basic columns. Therefore, the first two columns
of A form a basis for its column space: 1

3
7

 ,

 2
3
8

 .

NOTE: The first two columns of E in this case are the first two standard basis vectors,
which clearly don’t have the same span as the above two vectors.

A consequence of our discussion above is the following, rather surprising, result:

Theorem. The row rank of a matrix A is equal to its column rank.

Proof. Let E be the reduced echelon form of A. Then the number of its nonzero
rows is equal to the number of its basic columns. �

Definition. The rank of a matrix A, denoted rank(A) is the dimension of its row
space or column space.

Suppose we have a homogeneous system of linear equations

a11x11 + · · ·+ a1nxn = 0

...
...

...

am1xm + · · ·+ amnxn = 0.

Let A = (aij) be the matrix of coefficients. To solve the system, we compute the
reduced echelon form of the matrix A. The number of free parameters for the solution
space is then the number of non-basic columns, i.e., n− rank(A). There is a unique
solution ~0 exactly when the reduced echelon form is the matrix with 1s along its
diagonal and 0s, otherwise, i.e., exactly when there are no non-basic columns. Hence,
there is only the trivial solution if and only if rank(A) = n.

For a non-homogeneous system

a11x11 + · · ·+ a1nxn = b1 (11.1)

...
...

...

am1xm + · · ·+ amnxn = bn.

we would compute the echelon of the augmented matrix [A|b] where b is the column
with entries b1, . . . , bn. If the system is consistent, we have seen that the set of
solutions consists of any particular solution plus any vector in the span of n−rank(A)
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vectors that are solutions to the corresponding homogeneous system. So if the system
is consistent, there is a unique solution if and only if rank(A) = n.

Summary. The system (11.1), above, has a unique solution if and only if it is
consistent and rank(A) = n. In the case b1 = · · · = bn = 0, the system is homogeneous
and, thus, consistent (x1 = · · · = xn = 0 is a solution). So in the homogeneous case,
there is a unique solution if and only if rank(A) = n.
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Linear transformations. We have now defined the objects of study—vector spaces.
Next, we need to consider the appropriate mappings between those objects—those
that preserve the linear structure.

Definition. Let V and W be vector spaces over a field F . A linear transformation
from V to W is a function

f : V → W

satisfying, for all v, v′ ∈ V and λ ∈ F ,

f(v + v′) = f(v) + f(v′) and f(λv) = λf(v).

Remarks. Using the notation from the definition:

• If f(v+ v′) = f(v) + f(v′), we say f preserves addition. Note that the addition
on the left side is in V and the addition on the right side is in W . Thus, if
V 6= W , they are two different operations (with the same name). Similarly,
if f(λv) = λf(v), we say f preserves scalar multiplication.

• One may combine the two conditions, above, for linearity into one: for f to be
linear, we require

f(v + λv′) = f(v) + λf(v′)

for all v, v′ ∈ V and λ ∈ F .

• Synonyms for “linear transformation” are: “linear mapping” and “linear homo-
morphism”, often with the word “linear” dropped when clear from context (and
it will be since this is a course in linear algebra!).

• Our book restricts “linear transformation” to mean a linear transformation of
the form f : V → V , where the domain and codomain are equal. That is non-
standard, and we won’t use that terminology. Linear mappings from a vector
space to itself are called linear endomorphisms or linear self-mappings.

64
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Template for a proof that a mapping is linear. Consider the function

f : R3 → R2

(x, y, z) 7→ (2x+ 3y, x+ y − 3z).

Claim: f is linear.

Proof. Let (x, y, z), (x′, y′, z′) ∈ R3 and λ ∈ R.

f((x, y, z) + (x′, y′, z′)) = f(x+ x′, y + y′, z + z′)

= (2(x+ x′) + 3(y + y′), (x+ x′) + (y + y′)− 3(z + z′))

= ((2x+ 3y) + (2x′ + 3y′), (x+ y − 3z) + (x′ + y′ − 3z′))

= (2x+ 3y, x+ y − 3z) + (2x′ + 3y′, x′ + y′ − 3z′)

= f(x, y, z) + f(x′, y′, z′).

Thus, f preserves addition. Next,

f(λ(x, y, z)) = f(λx, λy, λz)

= (2(λx) + 3(λy), (λx+ λy − (3λz))))

= (λ(2x+ 3y), λ(x+ y − 3z))

= λ(2x+ 3y, x+ y − 3z)

= λf(x, y, z).

Thus, f preserves scalar multiplication.

Note: People sometimes confuse proofs that subsets are subspaces with proofs that
mappings are linear. To prove that W ⊆ V is a subspace, we show that W is
closed under addition and scalar multiplication by taking u, v ∈ W and λ ∈ F and
showing u+λv ∈ W . To prove f : V → W is linear, we show that f preserves addition
and scalar multiplication. Be careful not to confuse the words “closed under” with
“preserves”.

Example. Rotation about the origin in the plane R2 is a linear transformation:

u

v

u
+
v
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Exercise. Show that f : R→ R defined by f(x) = x2 is not linear.

Proof. We have f(1 + 1) = f(2) = 4 6= f(1) + f(1) = 1 + 1 = 2. �

The following proposition is often useful for showing a function is not linear.

Proposition 1. If f : V → W is linear, then f(~0V ) = ~0W .

Proof. Since f is linear,

f(~0V ) = f(0 ·~0V ) = 0 · f(~0V ) = ~0W .

Thus, for instance,

f : R2 → R
(x, y) 7→ x+ 2y + 5

is not linear since f(0, 0) = 5 6= 0.

Proposition 2. (A linear mapping is determined by its action on a basis.) Let V
andW be vector spaces over F , and letB be a basis for V . For each b ∈ B, let wb ∈ W .
Then there exists a unique linear function f : V → W such that f(b) = wb.

Proof. We define f as follows: Given v ∈ V , since B is a basis, we can write v =
α1b1 + · · ·+ αkbk for some αi ∈ F , bi ∈ B, and k ∈ Z≥0. Define

f(v) := α1f(b1) + . . . αkf(bk) = α1wb1 + · · ·+ αkwbk .

Since B is a basis, the expression for v as a linear combination of elements in B is
unique. Hence, f is well-defined. Further, linearity of f forces us to define f(v) as
we have. To see that f is linear, let v, w ∈ V and λ ∈ R. Write v and w as linear
combinations of the basis vectors:

v = α1b1 + · · ·+ αkbk

w = β1b1 + · · ·+ βkbk

for some scalars αi and βi. It follows that

v + λw = (α1 + λβ1)b1 + · · ·+ (αk + λβk)bk.

Using the definition of f , we see

f(v + λw) = (α1 + λβ1)wb1 + · · ·+ (αk + λβk)wbk
= (α1wb1 + · · ·+ αkwbk) + λ(β1wb1 + · · ·+ βkwbk)
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= f(v) + λf(w).

�

Terminology. We say the function f as in Proposition 2 has been defined on B then
extended linearly to all of V .

Example. Define a linear function f : R2 →M2×3(R) by

f(1, 0) =

(
1 0 2
3 −1 2

)
and f(0, 1) =

(
2 1 0
0 3 1

)
.

What is f(2,−1)?

Solution. In general, we have

f(x, y) = f (x(1, 0) + y(0, 1))

= xf(1, 0) + yf(0, 1)

= x

(
1 0 2
3 −1 2

)
+ y

(
2 1 0
0 3 1

)

=

(
x+ 2y y 2x

3x −x+ 3y 2x+ y

)
.

In particular,

f(2,−1) = 2

(
1 0 2
3 −1 2

)
−
(

2 1 0
0 3 1

)
=

(
0 −1 4
6 −5 3

)
.

Question. What goes wrong if we try to define a linear function by specifying its
values on a non-basis? For instance, what happens if we try to define a linear function
f : R2 → R2 by specifying the values for the non-basis {(1, 0), (2, 0)} as follows:

f(1, 0) = (3, 2) and f(2, 0) = (1, 1).

Note. Let V and W be vector spaces over F , and let X be a linearly subset of V .
For each x ∈ X, let wx ∈ W . Then there exists a linear function f : V → W such
that f(x) = wx for all x ∈ W . To see this, let B be any completion of X to a basis
for V , and apply Proposition 2. The map created this way is not unique: we are free
to choose any values for elements of B \X (the value ~0 might be a natural choice).

Here is something interesting that we will talk more about later:
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Definition. Let V and W be vector spaces over F . The collection of all linear
functions from V to W is denoted Hom(V,W ) or L(V,W ). It is a vector space over F
under addition and scalar multiplication of functions: for linear f, g : V → W ,

f + λg : V → W

v 7→ f(v) + λg(v).
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Recall the definition of a linear function from last time: a function f : V → W
between vectors spaces V and W over the (same) field F is a function f : V → W that
preserves addition and scalar multiplication. In detail, this means that for all u, v ∈ V
and λ ∈ F ,

f(u+ v) = f(u) + f(v) and f(λv) = λf(v).

Definition/Proposition 1. Suppose f : V → W is linear and U ⊆ V is a subspace
of V . Then the image of U under f is the set

f(U) := {f(u) : u ∈ U} ⊆ W.

The image of U under f is a subspace of W .

Proof. Since U is a subspace of V , it follows that 0V ∈ U , and hence, f(0V ) = 0W ∈
f(U). Thus, f(U) is nonempty. Next, let x, y ∈ f(U), and let λ ∈ F . By definition
of f(U), there are vectors u, v ∈ U such that f(u) = x and f(v) = y. Then since f is
linear, is preserves addition and scalar multiplication. Therefore,

x+ λy = f(u) + λf(v)

= f(u) + f(λv)

= f(u+ λv).

Since U is a subspace, it is closed under addition and scalar multiplication. There-
fore, u+ λv ∈ U . It follows that x+ λy = f(u+ λv) ∈ f(U), as required.

In particular, since V is a subspace of itself, its image under a linear function is a
subspace of the codomain of the function.

Definition. The image or range of a linear function f : V → W is the subspace

im(f) := R(f) := f(V ) := {f(v) : v ∈ V } ⊆ W.

69



Week 5, Wednesday 70

The dimension of the image of f is the rank of f (provided it is finite-dimensional)
and is denoted rank(f) or rk(f).

Example. Define a linear function f : R2 → R3 by letting f(1, 0) = (2, 1, 0) and f(0, 1) =
(0,−1, 1) and extending linearly. Thus, for all x, y ∈ R,

f(x, y) = f(x(1, 0) + y(0, 1))

= xf(1, 0) + yf(0, 1)

= x(2, 1, 0) + y(0,−1, 1).

We have
im(f) = R(f) = Span {(2, 1, 0), (0,−1, 1)} .

Since (2, 1, 0) and (0,−1, 1) are linearly independent and span the image, they are a
basis for the image of f , and thus, rank(f) = 2.

Remark. If f : V → W is a linear function, and B is a basis for V , then

im(f) = Span(f(B)).

To see this, let w ∈ im(f). Then there exists v ∈ V such that w = f(v). Since B is
a basis, there exists b1, . . . , bk ∈ B and a1, . . . , ak ∈ F such that v =

∑k
i=1 aibi. Then

since f is linear,

w = f(v) = f

(
k∑
i=1

aibi

)
=

k∑
i=1

aif(bi) ∈ Span(B).

Note, however, that f(B) is not necessarily a basis for im(f).

Example. Consider the function f : R2 → R2 given by f(x, y) = (x, 0), and let B =
{(1, 0), (0, 1)} be the standard basis for R2. Then

f(B) = {f(1, 0), f(0, 1)} = {(1, 0), (0, 0)} .

Although f(B) spans im(f), it is not linearly independent and is thus not a basis for
im(f).

Definition/Proposition 2. Let f : V → W be a linear mapping, and let U be a
subspace of W . Then the inverse image of U under f is the set

f−1(U) := {v ∈ V : f(v) ∈ U} ⊆ V.

The inverse image of U under f is a subspace of V .
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Proof. Since U is a subspace of W , we know 0W ∈ U . Then, since f(0V ) = 0W , it
follows that 0V ∈ f−1(U). So f−1(U) is nonempty. Next, let v, v′ ∈ f−1(U), and
let λ ∈ F . It follows that f(v) ∈ U and f(v′) ∈ U . Since U is a subspace, it follows
that f(v) + λf(v′) ∈ U . Since f is linear,

f(v + λv′) = f(v) + λf(v′) ∈ U.

It follows that v + λv′ ∈ f−1(U).

Definition. Let f : V → W be a linear mapping. The kernel or nullspace of f ,
denoted ker f or N (f), respectively, is the inverse image of {0W}:

ker(f) := N (f) := f−1({0W}) := {v ∈ V : f(v) = 0} .

It is a subspace of V (by Proposition 2). The dimension of the kernel is called the
nullity of f (provided it is finite-dimensional) and is denoted nullity(f).

Example. Consider the linear mapping

f : R2 → R3

(x, y) 7→ (2x, x− y, y).

To find the kernel of f , we look for vectors (x, y) such that

f(x, y) = (2x, x− y, y) = (0, 0, 0).

Comparing vector components, we see that x = y = 0 is the only possibility. There-
fore,

ker(f) = {(0, 0)} ,

and nullity(f) = 0.

Example. Let R[x]≤2 denote polynomials in x of degree at most two and with real
coefficients. Consider the linear mapping

f : R[x]≤2 −−−→ R2

a+ bx+ cx2 7→ (a+ b, a+ c).

To find the kernel of f , we need to find a, b, c such that f(a+ bx+ cx2) = (0, 0). This
amounts to solving the system of equations

a+ b = 0

a+ c = 0.
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Apply our algorithm: (
1 1 0 0
1 0 1 0

)
 

(
1 0 1 0
0 1 −1 0

)
. (?)

Solving for the pivot variables, we get

a = −c
b = c.

Therefore,

ker(f) =
{
−c+ cx+ cx2 : c ∈ R

}
= Span

{
−1 + x+ x2

}
.

Therefore, the nullity of f is dim(ker(f) = 1. A basis for R[x]≤2 is the set {1, x, x2},
and the image of these vectors forms a basis for the image of f :

f(1) = (1, 1), f(x) = (1, 0), f(x2) = (0, 1).

So the image of f is the column space of the matrix for the linear system we solved
to find the kernel (cf. Equation (?)). Using our algorithm for finding the basis of
the column space, we get the basis {(1, 1), (1, 0)}. Another basis is {(1, 0), (0, 1)}.
Therefore, the rank of f is rank(f) = 2.

Our main goal next time will to prove the following:

Theorem. (Rank-nullity theorem) Let f : V → W be a linear mapping, and suppose
that V is finite-dimensional. Then

rank(f) + nullity(f) = dimV.

In other words, dim(im(f)) + dim(ker(f)) = dimV .

Example. In the previous example, we found

rank(f) + nullity(f) = 2 + 1 = 3 = dimR[x]≤2.
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Let f : V → W be a linear mapping between vectors spaces V and W over a field F .
Recall the definitions from last time:

Definition. The kernel or null space of f is

N (f) := ker(f) := f−1({0W}) := {v ∈ V : f(v) = 0} .

The nullity1 of f is the dimension of the kernel.

The image or range of f is

R(f) = im(f) = f(V ) = {f(v) ∈ W : v ∈ V } .

The rank of f is the dimension of the image.

Theorem. (Rank-nullity theorem) Let f : V → W be a linear mapping, and suppose
that V is finite-dimensional. Then

rank(f) + nullity(f) = dimV.

In other words, the dim(im(f)) + dim(ker(f)) = dimV .

Proof. Let K = {v1, . . . , vk} be a basis for ker(f) (and therefore, nullity(f) = k).
Complete K to a basis for V :

B = {v1, . . . , vk, vk+1, . . . , vn} .

To prove the theorem, it suffices to show that {f(vk+1), . . . , f(vn)} is a basis for image(f).
We first show linear independence. Suppose that

ak+1f(vk+1) + · · ·+ anf(vn) = 0W .

1Don’t confuse this concept with the mullity of f , defined as follows: mullity(f) = p(f) + b(f)
where p(f) is the amount of party of f in the back and b(f) is the amount of business of f in the
front.
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Since f is linear, it follows that

f(ak+1vk+1 + · · ·+ anvn) = ak+1f(vk+1) + · · ·+ anf(vn) = 0W .

Therefore, ak+1vk+1+ · · ·+anvn ∈ ker(f). Since K = {v1, . . . , vk} is a basis for ker(f),
there are scalars a1, . . . , ak such that

ak+1vk+1 + · · ·+ anvn = a1v1 + · · ·+ akvk,

i.e.,
a1v1 + · · ·+ akvk − ak+1vk+1 − · · · − anvn = 0V .

This is a linear relation among the vectors of B, the basis we constructed for V .
Since B is a linearly independent set, all of the ai must be 0. In particular, ak+1 =
· · · = an = 0, as we were trying to show.

Next, we show that {f(vk+1), . . . , f(vn)} spans im(f). We know that since B =
{v1, . . . , vn} is a basis for V that

{f(v1), . . . , f(vn)}

spans the image of f . However, v1, . . . , vk are in ker(f), so

im(f) = Span {f(v1), . . . , f(vk), f(vk+1), . . . , f(vn)}
= Span {0W , . . . , 0W , f(vk+1), . . . , f(vn)}
= Span {f(vk+1), . . . , f(vn)} .

Proposition 1. The linear mapping f : V → W is injective (i.e., one-to-one) if and
only if ker(f) = {0V }.

Proof. (⇒) First suppose that f is injective, and let v ∈ ker(f). Therefore, f(v) =
0W . We also know that since f is linear, f(0V ) = 0W . So f(v) = 0W = f(0V ).
Since f is injective and f(v) = f(0V ), it follows that v = 0V . We have shown that
ker(f) = {0V }.
(⇐) For the converse, now suppose that ker(f) = {0V }, and let u, v ∈ V with f(u) =
f(v). It follows that f(u− v) = f(u)− f(v) = 0W . Hence, u− v ∈ ker(f). However,
we are assuming ker(f) = {0V }. So u− v = 0V , which means u = v. Therefore, f is
injective.

Proposition 2. Let S ⊆ V .
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(a) If S is linearly dependent, then f(S) := {f(s) : s ∈ S} ⊆ W is linearly depen-
dent. (The image of a dependent set is dependent.)

(b) If f is injective and S is linearly independent, then f(S) ⊆ W is linearly indepen-
dent. (The image of an independent set is independent provided f is injective.)

Proof. Suppose that
∑k

i=1 aisi = 0V for some ai ∈ F and si ∈ S. Since f is linear,
we have

0W = f(0V ) = f(
∑k

i=1 aisi) =
∑k

i=1 aif(si).

Thus, f preserves linear dependencies, as claimed in part (a).

Suppose now that f is injective and S is linearly independent. If
∑k

i=1 aif(si) = 0W
for some ai ∈ F and si ∈ S, then since f is linear,

0W =
∑k

i=1 aif(si) = f(
∑k

i=1 aisi).

Therefore,
∑k

i=1 aisi is in the kernel of f . Since, f is injective, ker(f) = {0V } by

Proposition 1. It follows that
∑k

i=1 aisi = 0V . Then, since S is linearly independent,
it follows that ai = 0 for all i. This shows that f(S) is linearly independent.

Definition. The linear function f : V → W is an isomorphism if there exists a linear
function g : W → V such that g ◦ f = idV and f ◦ g = idW . The function g is called
the inverse of f .

Remark. Suppose that f : V → W is an isomorphism. Then, just as proved in
Math 112 for mappings of sets, it follows that f is bijective, i.e., both injective and
surjective. For mappings of sets, being bijective is equivalent to having an inverse.
The same is true for mappings of vector spaces: A linear function f : V → W is
an isomorphism if and only if it is bijective. It turns out that if a linear function
is bijective, then its inverse mapping (as a mapping of sets) is automatically linear.
(Check this for yourself.)

Example. The space of 2×2 matrices over F is isomorphic to F 4. One isomorphism
is given by (

a b
c d

)
7→ (a, b, c, d).

Exercise. Write V ∼ W if there is an isomophism V → W . Check that ∼ is an
equivalence relation.

Proposition 3. A linear mapping f : V → W is an isomorphism if and only
if ker(f) = {0V } and im(f) = W , (i.e., if and only if its kernel is trivial and it
is surjective).
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Proof. We have just seen that ker f = {0V } if and only if f is injective, and by
definition of surjectivity, f is surjective if and only if im(f) = W . Thus, the condition
that ker(f) is trivial and im(f) = W is equivalent to the bijectivity of f .

Theorem 4. Let V be a vector space over F . Then V is isomorphic to F n if and
only if dimV = n.

Proof. (⇒) Suppose that f : V → F n is an isomorphism with inverse g : F n → V ,
and let e1, . . . , en be the standard basis for F n. Define vi = g(ei) ∈ V for i = 1, . . . , n.
We claim that B := {v1, . . . , vn} is a basis for V (and hence, dimV = n). First
note that B is linearly independent by Proposition 2 (a) since {e1, . . . , en} is linearly
independent. Next, to see that B spans, let v ∈ V , and write

f(v) =
n∑
i=1

aiei

for some ai ∈ F . It follows that

v = g(f(v)) = g (
∑n

i=1 aiei) =
∑n

i=1 aig(ei) =
∑n

i=1 aivi ∈ Span(B).

(⇐) Now suppose dimV = n. Choose a basis {b1, . . . , bn} for V , and let {e1, . . . , en}
be the standard basis for F n. Define f : V → F n by f(bi) = ei for i = 1, . . . , n and
extending linearly. Recall what this means: given v ∈ V , there are unique αi ∈ F
such that v =

∑n
i=1 αibi. Then by definition of “extend linearly”,

f(v) =
n∑
i=1

αif(bi) =
n∑
i=1

αiei = (α1, . . . , αn) ∈ F n.

Earlier, we called (α1, . . . , αn) the coordinates of v with respect to the ordered basis
〈b1, . . . , bn〉.
Suppose v ∈ ker(f), and write v =

∑n
i=1 αibi. Then 0W = f(v) =

∑n
i=1 αiei im-

plies αi = 0 for all i since the ei are linearly independent. So v = 0V . This shows
that the kernel of f is trivial, and hence, f is injective. For surjectivity, note that
the image contains all linear combinations of the standard basis vectors, e1, . . . , en
for F n.

Remarks: Theorem 4 says that for each n = 0, 1, 2, . . . , there is essentially only
one vector space over F of dimension n. More precisely, under the equivalence rela-
tion V ∼ W defined earlier, there is one equivalence class for each natural number n.
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Theorem 4 and its proof say that the difference between a vector space V of di-
mension n and F n is the choice of a basis. Once a basis B is chosen, we get an
isomorphism V → F n by sending each vector to its coordinates with respect to B:

V → F n

v 7→ [v]B.

The practical importance of this result is that if we have a problem involving vectors
in V , we can use the isomorphism to translate problem into one about n-tuples in
F n. We apply our algorithms, e.g., Gaussian elimination, to solve the problem in F n

and then use the inverse of the isomorphism to translate the solution back to V .

Corollary 5. Let V and W be finite-dimensional vectors spaces. Then V and W are
isomorphic if and only if they have the same dimension.

Proof. First, suppose that f : V → W is an isomorphism, and let b1, . . . , bn be a basis
for V . By Proposition 2, f(b1), . . . , f(bn) are linearly independent, and since f is
surjective, they span W . So {f(b1), . . . , f(bn)} is a basis for W . Thus, the number
of elements in a basis for V is the same as the number of elements in a basis for W ,
which says that dimV = dimW .

Conversely, suppose that dimV = dimW = n. By Theorem 4, we have isomorphisms
fV : V → F n and fW : W → F n. Let f−1W : F n → W be the inverse of fW . It follows
that the composition,

V
fV−→ F n f−1

W−−→ W

is an isomorphism. (From Math 112, you know that a composition of bijections of
sets is a bijection of sets, and you should do the easy check that a composition of
linear functions is linear.)

Proposition 6. Let f : V → W be a linear function, and let dimV = dimW < ∞.
(An important special case is f : V → V when dimV < ∞.) Then the following are
equivalent:

(a) f is injective (1-1),

(b) f is surjective (onto),

(c) f is an isomorphism.

Proof. The proof is left as an exercise. The central idea is to use the rank-nullity
theorem to relate injectivity and surjectivity.
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Note: Proposition 6 is not true if the dimensions of V and W are not finite. For
instance, consider the infinite-dimensional vector space P(F ) = F [x] and the mapping

F [x]→ F [x]

f 7→ xf,

given by multiplication by x. For instance, under this mapping, 1+x+x2 7→ x+x2+x3.
This mapping is linear and injective, but not surjective. For instance, 1 is not in the
image (nor is any other constant besides 0).
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Our next goal is to encode linear functions by matrices. We first treat the special case
of linear functions of the form F n → Fm. Next, we consider linear functions V → W
between general finite-dimensional vector spaces. If dimV = n and dimW = m we
saw last time that a choices of bases give isomorphisms V ' F n and W ' Fm, which
reduces the problem to the special case.

Matrices for linear functions F n → Fm. The dot product of vectors (a1, . . . , an)
and (b1, . . . , bn) in F n is defined by

(a1, . . . , an) · (b1, . . . , bn) :=
n∑
i=1

aibi = a1b1 + · · ·+ anbn.

From now on we make adopt the convention of identifying vectors (a1, . . . , an) ∈ F n

with n× 1 matrices, also called column vectors : a1
...
an

 .

If A ∈Mm×n(F ) and x = (x1, . . . , xn) ∈ F n, we define Ax ∈ Fm to be the element of
Fm whose i-th component (Ax)i is the dot product of the i-th row of A with x:

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 :=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


= (a11x1 + a12x2 + · · ·+ a1nxn, a21x1 + a22x2 + · · ·+ a2nxn, . . . , am1x1 + am2x2 + · · ·+ amnxn).

The latter equals sign is just making the identification of column vectors with elements
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of Fm. Equivalently,

Ax := x1


a11
a21
...
am1

+ x2


a12
a22
...
am2

+ · · ·+ xn


a1n
a2n
...

amn

 .

We could similarly, convert the above notation into a statement about a linear com-
bination of m-tuples in Fm instead of using column vectors.

Definition. Let A ∈Mm×n(F ). The linear associated with A is

LA : F n → Fm

x 7→ Ax.

Exercise. The reader should perform the routine check that LA is a linear function:
LA(x+ λy) = LA(x) + λLA(y).

Examples.

(1) The matrix

A =

(
2 −5 4
3 0 2

)
has corresponding linear mapping

LA : F 3 → F 2

(x, y, z) 7→
(

2x− 5y + 4z
3x+ 2z

)
.

Recall that we are identifying To save space, we could we will write this as

LA : F 3 → F 2

(x, y, z) 7→ (2x− 5y + 4z, 3x+ 2z).

(2) Note that if you were given the linear function LA, you could easily recover the
matrix: just read off the coefficients of each component of LA(x) to find the rows
of A. (We will see another way of recovering A below.) For example, find the
matrix corresponding to the linear function φ : F 3 → F 2 defined by φ(u, v) =
(4u− 3v, 6u+ 2v, 3v).
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Solution. Reading off the coefficients of each component of φ gives our matrix.
Defining

A :=

 4 −3
6 2
0 3

 ,

it is easy to check that φ = LA.

(3) Here are some important special cases of this correspondence between linear func-
tions and matrices:

LA(x) = (2x, 5x, 7x) ! A =

 2
5
7


LB(w, x, y, z) = w + 2x− 4y + z ! B =

(
1 2 −4 1

)
LC(t) = 8t ! C =

(
8
)
.

We have formally defined the linear mapping LA associated with a matrix A, and
from the examples above, it may be clear how to go in the other direction to find the
matrix of a given linear function. Here is the formal definition:

Definition. The matrix associated with the linear function L : F n → Fm is the
element A ∈Mm×n(F ) whose j-th column is L(ej) where ej is the j-th standard basis
vector for F n.

Examples. Consider the first two examples given above.

(1) Consider the linear function L : F 3 → F 2 given by L(x, y, z) = (2x−5y+4z, 3x+
2z). Evaluate L at the three standard basis vectors for F 3:

L(e1) = L(1, 0, 0) = (2, 3)

L(e2) = L(0, 1, 0) = (−5, 0)

L(e3) = L(0, 0, 1) = (4, 2).

Use these three vectors to form a matrix:

A =

(
2 −5 4
3 0 2

)
.

Thus, L = LA.
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(2) Consider the linear function φ : F 3 → F 2 given by φ(u, v) = (4u−3v, 6u+2v, 3v).
Then,

φ(1, 0) = (4, 6, 0) and φ(0, 1) = (−3, 2, 3).

Place these vectors as columns to get the matrix 4 −3
6 2
0 3

 .

We have, thus, created a bijective correspondence between linear function F n → Fm

and matrices in Mm×n(F ).

Matrices for linear functions V → W .

Let V and W be vector spaces with ordered bases B = 〈v1, . . . , vn〉 and D =
〈w1, . . . , wm〉, respectively. Taking coordinates with respect to these bases yields
isomorphisms φB : V → F n and φD : W → Fm. For instance, if v ∈ V , we
write v =

∑n
i=1 aivi, and then φB(v) := (a1, . . . , an). Now suppose we have a lin-

ear function f : V → W . So up to now we have three mappings we are considering:

V W

F n Fm

φB ∼

f

φD∼

We now describe how to use this diagram to create a linear function L : F n → Fm.
Since φB is an isomorphism, we can invert it and then define L by starting at F n,
applying φ−1B to go up the left-hand side of the diagram arriving at V , then applying f
to go to W , and finally using φD to go from W to Fm. More succinctly, define:

L := φD ◦ f ◦ φ−1B .

In sum, we have the following important commutative diagram:

V W

F n Fm

φB ∼

f

φD∼

L

Saying the diagram is commutative means the no matter which path we take from V
to Fm, we arrive at the same place, i.e.,

L ◦ φB = φD ◦ f.
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Now L is a mapping between tuples and, thus, has a matrix, as discussed at the
beginning of this lecture. To keep track of all of the input data, we use the following,
necessarily complicated, notation for this matrix:

[f ]DB := matrix corresponding to L.

How do we compute this matrix? The algorithm for computing [f ]βα is summa-
rized in the diagram below:

V W

F n Fm.

φB ∼
f

φD∼
[f ]DB

vj f(vj)

ej j-th col. of [f ]DB

take coords. wrt. D

In words: since [f ]DB is a matrix, its j-th column is given by [f ]DB (ej). By definition,

[f ]DB (ej) = φD ◦ f ◦ φ−1B (ej) = φD
(
f
(
φ−1B (ej)

))
.

We have φB(vj) = ej. Hence, φ−1B (ej) = vj ∈ V . So,

[f ]DB (ej) = φD
(
f
(
φ−1B (ej)

))
= φD (f(vj)) .

So here is the algorithm for computing [f ]DB :

To find the j-th column of [f ]DB compute the coordinates of f(vj) with
respect to D = 〈w1, . . . , wm〉 for each vj ∈ B = 〈v1, . . . , vn〉.

Example. Consider linear function f : R2 → R2 given by the matrix

A =

(
1 4
2 3

)
.

Thus, f(x, y) = (x+ 4y, 2x+ 3y. Using the notation above, we are letting V = W =
R2. Take the same ordered basis for both V and W given by

B = D = 〈(1, 1), (−2, 1)〉.

Find the matrix representing f with respect to this choice of bases for domain and
codomain.
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Solution. To conform with our earlier notation, we take v1 = (1, 1) and v2 = (−2, 1).
First apply f to each of the basis vectors for V :

f(v1) = (5, 5)

f(v2) = (2,−1).

Next, take the coordinates of these vectors with respect to the basis B for W :

(5, 5) = 5v1 + 0 · v2
(2,−1) = 0 · v1 − v2.

Hence,

φB(v1) = (5, 0)

φB(v2) = (0,−1).

These are the columns for our matrix:

[f ]BB =

(
5 0
0 −1

)
.

We arrive at the commutative diagram:

R2 R2

R2 R2

φB ∼

f

φB∼

L

Where L is the linear function corresponding to [f ]BB, i.e.,

L(x, y) = (5x,−y).

Example. Consider the linear mapping

f : R[x]≤2 → R[x]≤3

p 7→ xp.

Thus, f consists of multiplying a polynomial by x. Choose bases B = 〈1, x, x2〉 for
the domain and D = 〈1, x, x2, x3〉 for the codomain. Thus, φB(a+ bx+ cx2) = (a, b, c)
and φD(a + bx + cx2 + dx3) = (a, b, c, d). To find [f ]DB , compute the images of the
elements in B and express them as linear combinations of elements of D:

f(1) = x = 0 · 1 + 1 · x+ 0 · x2 + 0 · x3
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f(x) = x2 = 0 · 1 + 0 · x+ 1 · x2 + 0 · x3

f(x2) = x3 = 0 · 1 + 0 · x+ 0 · x2 + 1 · x3.

Therefore,

[f(1)]D = (0, 1, 0, 0)

[f(x)]D = (0, 0, 1, 0)

[f(x2)]D = (0, 0, 0, 1).

These vectors are the columns for our matrix:

[f ]DB =


0 0 0
1 0 0
0 1 0
0 0 1

 .
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Recall from last time that given a linear mapping f : V → W and ordered bases B =
〈v1, . . . , vn〉 and D = 〈w1, . . . , wm〉 for V and W , respectively, we have a commutative
diagram

V W

F n Fm

φB ∼
f

φD∼
L

where
L := φD ◦ f ◦ φ−1B .

The matrix representing L is denoted [f ]DB and its calculation is displayed in the
following diagram:

V W

F n Fm.

φB ∼

f

φD∼

[f ]DB

vj f(vj)

ej j-th col. of [f ]DB

take coords. wrt. D

We compute [f ]DB by finding each of its columns: To find the j-th column of [f ]DB
compute the coordinates of f(vj) with respect to D = 〈w1, . . . , wm〉 for each vj ∈ B =
〈v1, . . . , vn〉.
Commutativity of the diagram says that for each v ∈ V

[f ]DB (φB(v)) = φD(f(v)).

Recall our notation for the coordinates of a vector with respect to a ordered basis,
we can rewrite that above as

[f ]DB [v]B = [f(v)]D.
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Example. Consider the linear function

f : R[x]≤2 → R[x] ≤ 3

p 7→ xp+ 2p′.

Choose ordered bases B = 〈1, x, x2〉 and D = 〈1, x, x2, x3〉 for the domain and
codomain, respectively. Find the matrix representing f with respect to these bases,
and use the matrix to computer f(3 + 2x+ x2).

Solution. Compute the images of the basis vectors in B:

f(1) = x · 1 + 2(1)′ = x

f(x) = x · x+ 2(x)′ = x2 + 2

f(x2) = x · x2 + 2(x2)′ = x3 + 4x.

Next, find the coordinates of each of these with respect to D:

[x]D = (0, 1, 0, 0)

[x2 + 2]D = (2, 0, 1, 0)

[x3 + 4]D = (0, 4, 0, 1).

Therefore,

[f ]DB =


0 2 0
1 0 4
0 1 0
0 0 1

 .

Here is a helpful way to think about this matrix:


0 2 0
1 0 4
0 1 0
0 0 1

.

f(1) f(x) f(x2)

1
x
x2

x3

The columns are labeled by the images of the basis vectors of the domain, and the
rows are labeled by basis vectors of codomain.

To find f(3 + 2x+ x2), we first do the calculation using coordinates:

[f(3 + 2x+ x2)]D = [f ]DB [3 + 2x+ x2]B
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=


0 2 0
1 0 4
0 1 0
0 0 1


 3

2
1



=


4
7
2
1

 .

It follows that
f(3 + 2x+ x2) = 4 + 7x+ 2x2 + x3.

Check using the definition of f :

f(3 + 2x+ x2) = x(3 + 2x+ x2) + 2(3 + 2x+ x2)′

= (3x+ 2x2 + x3) + 2(2 + 2x)

= 4 + 7x+ 2x2 + x3.

We would next like to prove that the rank of a linear function is equal to the rank of
any matrix representative of that function. Recall that the rank of a linear function
is the dimension of its image, and the rank of a matrix is the dimension of its column
space (which we saw is equal to the dimension of its row space—it is the number of
pivot columns in the reduced row echelon form of the matrix).

Proposition. Let V and W be finite-dimensional vector spaces with ordered bases B
and D, respectively. Let f : V → W be a linear transformation. Then

rank(f) = rank([f ]DB ).

Proof. We first consider the special case of a linear mapping LA : F n → Fm where A ∈
Mm×n. Thus, LA(x) = Ax. We saw last time that the image of LA is the span of the
column of A, i.e., the column space of A. Thus, the result holds in this case:

rank(LA) := dim(im(LA)) = dim(colspace(A)) = rank(A).

Now consider the general case. We have the commutative diagram

V W

F n Fm

φB ∼

f

φD∼

LA
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where, in this case, A = [f ]DB . Since φB and φD are isomorphism and the diagram
commutes,

rank(LA) := dim(im(LA)) = dim(im(LA◦φB)) = dim(im(φD◦f)) = dim(im(f)) =: rank(f).

We have seen that rank(LA) = rank(A). So the result follows, in general.

Corollary. With notation as above, let A = [f ]DB ∈Mm×n(F ).

(a) f is surjective if and only if rank(A) = m = dim(W ).

(b) f is injective if and only if rank(A) = n = dim(V ).

(c) f is an isomorphism if and only if rank(A) = m = n.

Proof.

(a) The function f being surjective means that im(f) = W , which is equivalent to
saying that dim(im(f)) = dim(W ), or that rank(f) = m, and we have just seen
that rank(f) = rank(A).

(b) We know that f is injective if and only if dim(ker(f)) = 0. By the rank-nullity
theorem,

n = dimV = dim(im(f)) + dim(ker(f)) = rank(f) + dim(ker(f)).

From the Proposition, we have rank(f) = rank(A). Therefore, dim(ker f) = 0 if
and only if rank(A) = n.

(c) This part follows from the previous two.

Composition of linear functions. Consider the linear functions

f : R4 → R2

(x, y, z, w) 7→ (2x− z + 3w, x− y + 4z)

and

g : R2 → R3

(s, t) 7→ (5s− t, 2t,−3s).
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Let’s compute the composition g ◦ f : R4 → R3:

(g ◦ f)(x, y, z, w) = g(2x− z + 3w︸ ︷︷ ︸
s

, x− y + 4z︸ ︷︷ ︸
t

)

= (5(2x− z + 3w)− (x− y + 4z), 2(x− y + 4z),−3(2x− z + 3w))

= (9x+ y − 9z + 15w, 2x− 2y + 8z,−6x+ 3z − 9w).

The matrices associated with f and g (with respect to the standard bases) are, re-
spectively,

(
2 0 −1 3
1 −1 4 0

)
,

 5 −1
0 2
−3 0

 ,

 9 1 −9 15
2 −2 8 0
−6 0 3 −9

 .

What is the relation among these matrices? We will take up this question next time.
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The goal today is to formally define the algebraic structure for matrices (linear struc-
ture and multiplication). Multiplication of matrices corresponds with composition of
their corresponding linear transformations.

Composition of linear functions.

Proposition. Let f : V → W and g : W → U be linear functions. Their the compo-
sition g ◦ f : V → U is a linear function.

Proof. Let u, v ∈ V and λ ∈ F . Then, since f and g are linear,

(g ◦ f)(u+ λv) := g(f(u+ λv))

= g (f(u) + λf(v))

= g(f(u)) + λg(f(v))

= (g ◦ f)(u) + λ(g ◦ f)(v).

Let f : V → W and g : W → U be a linear functions. We are interested in a matrices
representing the composition

g ◦ f : V
f−→ W

g−→ U.

Fix ordered bases B = 〈v1, . . . , vn〉 for V , C = 〈w1, . . . , w`〉 forW , andD = 〈u1, . . . , um〉
for U . Let

P := [g]DC and Q = [f ]CB.

Thus, P ∈Mm×`(F ) and Q ∈M`×n. The relevant commutative diagram is

V W U

F n F ` Fm

φB ∼

f

φC∼

g

φD∼

Q P
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Let’s compute [g ◦ f ]DB . To find its j-th column, we find the coordinates of (g ◦ f)(vj)
with respect to the ordered basis D:

(g ◦ f)(vj) = g(f(vj))

= g

(∑̀
k=1

Qkjwk

)
( j-th column of Q)

=
∑̀
k=1

Qkjg(wk)

=
∑̀
k=1

Qkj

(
m∑
i=1

Pikui

)
( k-th column of P )

=
m∑
i=1

(∑̀
k=1

PikQkj

)
ui.

So the j column of [g ◦ f ]DB is given by the coefficients of the ui in the above some.
That means that the (i, j)-th entry of the matrix [g ◦ f ]DB , i.e., the entry in its i-row
and j-th column is (

[g ◦ f ]DB
)
ij

=
m∑
k=1

PikQkj.

Definition. (Multiplication of matrices) Let P ∈ Mm×`(F ) and Q ∈ M`×n(F ), then
the product PQ ∈Mm×n(F ) is defined by

(PQ)ij =
∑̀
k=1

PikQkj.

Note: The formula says that the (i, j)-th entry of the product PQ is the dot product
of the i-th row of P with the j-th column of Q. That’s what one thinks about when
performing the calculation of PQ in practice.

Example. Here is an example of the product of two matrices. For instance, to find
the (2, 3)-entry of the product, we take the dot product of the second row of the first
matrix with the third column of the second: 5 −1

0 2
−3 0

( 2 0 −1 3
1 −1 4 0

)
=

 9 1 −9 15
2 −2 8 0
−6 0 3 −9

 .
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Recall the relevance of this computation: the first two matrices encode linear func-
tions g and f , and their product is a matrix encoding the composition g ◦ f .

Proposition. Let f : V → W and g : W → U be a linear functions, and fix ordered
bases B = 〈v1, . . . , vn〉 for V , C = 〈w1, . . . , w`〉 for W , and D = 〈u1, . . . , um〉 for U .
Then we have

[g ◦ f ]DB = [g]DC [f ]CB.

Proof. The proof is exactly the motivation we just gave for the definition of the matrix
product.

We summarize some basic properties of matrix algebra.

Proposition. Let A be an m × n matrix, B an n × r matrix, both over a field F ,
and λ ∈ F .

(a) λ(AB) = (λA)B = A(λB).

(b) A(BC) = (AB)C for all r × s matrices C.

(c) A(B + C) = AB + AC for all n× r matrices C.

(d) (C +D)A = CA+DA for all r ×m matrices C and D.

Proof. We will just prove part (b), associativity of multiplication. So let C be an r×s
matrix. We have

(A(BC))ij =
n∑
k=1

Aik(BC)kj

=
n∑
k=1

(
Aik

(
r∑
`=1

Bk`C`j

))

=
n∑
k=1

r∑
`=1

Aik(Bk`C`j)

=
r∑
`=1

n∑
k=1

Aik(Bk`C`j)

=
r∑
`=1

n∑
k=1

(AikBk`)C`j
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=
r∑
`=1

(
n∑
k=1

AikBk`

)
C`j

=
r∑
`=1

(AB)i`C`j

= ((AB)C)ij.

Warning. Matrix multiplication is not commutative, in general. First of all, if the
dimensions aren’t right, multiplication for both AB and BA might not make sense.
For instance, if

A =

(
1 0
3 −1

)
and B =

(
1 0 2
3 1 4

)
,

then AB is defined, but not BA.

However, even if AB and BA are both defined, it is usually not the case that AB =
BA. Try just about any example with 2× 2 matrices to see this.

Definition. Let V and W be vector spaces over a field F . The set of linear transfor-
mations (homomorphisms) from V to W is denoted L(V,W ) or Hom(V,W ). It forms
a vector space with operations defined as follows: for f, g ∈ Hom(V,W ) and λ ∈ F ,

(f + g)(v) = f(v) + g(v) and (λf)(v) = λf(v)

for all v ∈ V .

Proposition. Let V and W be vectors spaces over F of dimension n and m, respec-
tively. Then there is an isomorphism of vector spaces

Hom(V,W )→Mm×n(F ).

Sketch of proof. Choose ordered bases B and D for V and W , respectively. Then an
isomorphism is given by

Hom(V,W )→Mm×n(F )

f 7→ [f ]DB .

This isomorphism will change to a different isomorphism if different bases are chosen.



Week 7, Monday: Matrix inversion

Last time, we defined matrix multiplication: if A is an m× p matrix and B is a p×n
matrix, then AB is the m× n matrix with i, j-entry

(AB)ij :=

p∑
k=1

AikBkj.

If m = n, then BA would also be defined, but it is usually that case that AB 6= BA.
Another peculiar thing is that for matrices, there are “zero divisors”, i.e., matri-
ces A,B such that AB = 0, but neither A nor B is a zero matrix. For example,(

0 0
0 1

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

Diagonal matrices. The matrix A is a diagonal matrix if its only nonzero entries
appear along the diagonal: Aij = 0 if i 6= j. This terminology makes sense regardless
of the dimensions of A, but is usually used in the case of square matrices, i.e., for the
case where A is an n× n matrix. In that case, we write

A = diag(a1, . . . , an)

where Aii = ai for i = 1 . . . , n (and Aij = 0, otherwise.). For instance,

diag(1, 4, 0, 6) =


1 0 0 0
0 4 0 0
0 0 0 0
0 0 0 6

 .

Identity matrices. The n× n identity matrix is the n× n matrix

In = diag(1, . . . , 1).

It has the following property: AIn = A and InB = B whenever these products make
sense. For instance,
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(
1 2 3
4 5 6

) 1 0 0
0 1 0
0 0 1

 =

(
1 2 3
4 5 6

)
and  1 0 0

0 1 0
0 0 1

 1 2
3 4
5 6

 =

 1 2
3 4
5 6

 .

Inverses. Let A be an m × n matrix, and let B be an n ×m matrix. If AB = In,
we say A is a left-inverse for B and B is a right-inverse for A. For example,

A =

(
1 1 1
0 1 1

)
and B =

 1 −1
0 0
0 1

 .

Then

AB =

(
1 1 1
0 1 1

) 1 −1
0 0
0 1

 =

(
1 0
0 1

)
.

Hence, A is a left-inverse for B and B is a right-inverse for A. On the other hand,

BA =

 1 −1
0 0
0 1

( 1 1 1
0 1 1

)
=

 1 0 0
0 0 0
0 1 1

 .

So B is not a left-inverse of A and A is not a right-inverse of B. (In fact, B does
not have a left-inverse and A does not have a right-inverse. This has to do with their
ranks not being high enough. The connection with solving systems of equations we
describe below explains that.)

We will mainly be interested in inverses for square matrices. Suppose that A is an n×n
matrix. Suppose B is a right-inverse. So B is an n × n matrix such that AB = In.
Since matrix multiplication is not commutative, the value of BA is not immediately
clear. However, in fact, we have the following important result:

Theorem. Let A and B be n× n matrices. The following are equivalent:

(a) AB = In.
(b) BA = In.

If AB = In, we say A and B are invertible and write A−1 = B and B−1 = A. The
following are equivalent:
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(i) A is invertible.
(ii) rank(A) = n.

(iii) The reduced echelon form of A is In.

The proof of this theorem will follow from an elegant algorithm for computing the
inverse of a matrix which we present below. The equivalence of the last to items on
the list is something we already know.

Calculating the inverse. Our problem now is to determine whether an inverse for a
matrix exists, and if so, to calculate that inverse. The methods we present here would
also be applicable to calculating right- and left-inverses of non-square matrices—it
boils down to solving systems of linear equations, after all—but we will concentrate
on the case of square matrices.

Example. Let

A =

 0 3 −1
1 0 1
1 −1 0

 .

A right-inverse for A would satisfy the following: 0 3 −1
1 0 1
1 −1 0

 a b c
d e f
g h i

 =

 1 0 0
0 1 0
0 0 1

 .

So we need to find the entries a, b, . . . , i. We can break this into three problems: 0 3 −1
1 0 1
1 −1 0

 a
d
g

 =

 1
0
0


 0 3 −1

1 0 1
1 −1 0

 b
e
h

 =

 0
1
0


 0 3 −1

1 0 1
1 −1 0

 c
f
i

 =

 0
0
1

 .

Equivalently, we need to solve three systems of linear equations:

0x+ 3y − z = 1
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x+ 0y + z = 0

x− y + 0z = 0

0x+ 3y − z = 0

x+ 0y + z = 1

x− y + 0z = 0

0x+ 3y − z = 0

x+ 0y + z = 0

x− y + 0z = 1

Their augmented matrices would like: 0 3 −1 1
1 0 1 0
1 −1 0 0

 ,

 0 3 −1 0
1 0 1 1
1 −1 0 0

 ,

 0 3 −1 0
1 0 1 0
1 −1 0 1

 .

The row operations needed to determine the solvability of this system are the same
in all three cases. So we can combine all three of these systems at once in one
“super”-augmented matrix calculation: 0 3 −1 1 0 0

1 0 1 0 1 0
1 −1 0 0 0 1

 r1↔r2−−−→

 1 0 1 0 1 0
0 3 −1 1 0 0
1 −1 0 0 0 1



r3→r3−r1−−−−−−→

 1 0 1 0 1 0
0 3 −1 1 0 0
0 −1 −1 0 −1 1



r2↔r3−−−−→
r3→−r3

 1 0 1 0 1 0
0 1 1 0 1 −1
0 3 −1 1 0 0



r3→r3−3r2−−−−−−→

 1 0 1 0 1 0
0 1 1 0 1 −1
0 0 −4 1 −3 3
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r3→−r3/4−−−−−−→

 1 0 1 0 1 0
0 1 1 0 1 −1
0 0 1 −1/4 3/4 −3/4



r1→r1−r3−−−−−−→
r2→r2−r3

 1 0 0 1/4 1/4 3/4
0 1 0 1/4 1/4 −1/4
0 0 1 −1/4 3/4 −3/4

 .

Going back to the original systems of equations, we see that we need a
d
g

 =

 1/4
1/4
−1/4

 ,

 b
e
h

 =

 1/4
1/4
3/4

 ,

 c
d
i

 =

 3/4
−1/4
−3/4

 .

In other words, the following matrix is a right-inverse for A: 1/4 1/4 3/4
1/4 1/4 −1/4
−1/4 3/4 −3/4

 .

The argument we’ve just given for a particular matrix easily generalizes to give the
following algorithm.

Algorithm for computing the inverse of a matrix. Let A be an n× n matrix.
Perform row operations on the “super”-augmented matrix [A | In] to compute the
reduced echelon form of A:

(A | In) −→
(
Ã | B

)
.

There are two possibilities: either Ã = In or not. If Ã = In, then B = A−1. Next,
we consider what happens when Ã 6= In. Since B is derived by performing row
operations on In, we have rank(B) = rank(In) = n. Thus, B cannot have a row of
zeros. If Ã 6= In, it must have a row of zeros. It follows that the system of equations
is inconsistent, and A has no inverse.

Now suppose that rank(A) so that

(A | In) −→ (In | B) (18.1)

and AB = In. Consider trying to find C so that BC = In. In this case, reverse the
row operations in (18.1) to get

(B | In) −→ (In | A) ,

and thus, C = A, i.e., BA = In.

In summary:
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• If Ã = In (equivalently, rank(A) = n) then AB = BA = In. (So B = A−1 and
A = B−1.)

• If Ã 6= In (equivalently, rank(A) < n), then Ã has a row of zeros and A has no
inverse.

In particular: A ∈Mn×n is invertible if and only if rank(A) = n.



Week 7, Wednesday: Change of basis

Let V be a vector space with ordered basis α = 〈v1, . . . , vn〉. Recall the coordinate
mapping

φα : V
∼−→ F n

v = a1v1 + · · ·+ anvn 7→ (a1, . . . , an).

In particular, we have φα(vj) = ej. Consider the special case where V = F n so that

φα : F n → F n,

and each vj is an element of F n. Since φα is now a mapping between tuples, is
represented by the n×n matrix M with the property that φα(v) = Mv for all v ∈ F n.
The j-th column of M is φα(ej) for j = 1, . . . , n.

Proposition. With notation as above, let P be the n×n matrix whose j-th column
is vj for j = 1, . . . , n. Then M = P−1.

Proof. If X is any matrix, then Xej is the j-th column of X. So in our case, Pej = vj.
Since the vj form a basis, the columns of P are linearly independent. So P has rank n
and is, thus, invertible. We have

Pej = vj ⇒ P−1Pej = P−1vj ⇒ ej = P−1vj.

Therefore, P−1vj = ej = φα(vj) for all j. Since the vj form a basis for F n, it follows
that P−1v = φα(v) for all v ∈ F n. So P−1 is the matrix representing φα, which means
that P−1 = M .

Next, consider a linear function

LA : F n → Fm

given by the m × n matrix A, i.e., LA(v) = Av for all v ∈ F n. Let α = 〈v1, . . . , vn〉
and β = 〈w1, . . . , wm〉 be ordered bases for F n and Fm respectively. What is the
matrix representing LA with respect to these new bases? We have the diagram
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F n Fm

F n Fm.

φα ∼

LA

φβ∼

[LA]
β
α

For ease of notation, let B := [LA]βα. Our main goal today is to give a formula for
calculating B. We already know how to find the matrices representing the vertical
coordinate mappings: let P and Q be the matrices whose columns are the elements
of α and β, respectively, in order. Our diagram becomes

F n Fm

F n Fm.

P−1 ∼

A

Q−1∼

B

Therefore, B = Q−1AP . We summarize our result:

Proposition. Let A ∈ Mm×n(F ), and consider the linear mapping LA : F n → Fm

determined by A, i.e., L(v) = Av for each v ∈ F n. Let α = 〈v1, . . . , vn〉 and β =
〈w1, . . . , wm〉 be ordered bases for F n and Fm, respectively. Let P be the n × n
matrix with j-th column vj for j = 1, . . . , n, and let Q be the m×m matrix with j-th
column wj for j = 1, . . . ,m. Then the matrix B representing LA with respect to the
bases α and β is

B = Q−1AP,

and we have the commutative diagram

F n Fm

F n Fm.

P−1 ∼

A

Q−1∼

B

Example. Let Q be the field of rational numbers, and consider the linear function

f : Q3 → Q2

(x, y, z) 7→ (x+ 3y + 2z, 2y + z),

with corresponding matrix

A =

(
1 3 2
0 2 1

)
.

Choose the following bases for the domain and codomain:

Q3 : α = 〈(1, 0, 0), (1, 1, 0), (1, 1, 1)〉
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Q2 : β = 〈(0, 1), (1, 1)〉.

To find the matrix representing f with respect to these new bases, create matrices
whose columns are the basis vectors:

P =

 1 1 1
0 1 1
0 0 1

 and Q =

(
0 1
1 1

)
.

Calculate the inverse of Q:(
0 1 1 0
1 1 0 1

)
r1↔r2−−−→

(
1 1 0 1
0 1 1 0

)
r1→r1−r2−−−−−−→

(
1 0 −1 1
0 1 1 0

)
.

The matrix representing f with respect to the bases α and β is then:

B = Q−1AP =

(
−1 1

1 0

)(
1 3 2
0 2 1

) 1 1 1
0 1 1
0 0 1

 =

(
−1 −2 −3

1 4 6

)
.

This agrees with the fact that

f(1, 0, 0) = (1, 0) = −1(0, 1) + 1(1, 1)

f(1, 1, 0) = (4, 2) = −2(0, 1) + 4(1, 1)

f(1, 1, 1) = (6, 3) = −3(0, 1) + 6(1, 1).

An important special case. The special case of the Proposition that arises most
frequently in practice is where m = n and α = β. In other, words, we start with
a mapping LA : F n → F n represented by the matrix A, and we choose the same
new basis α = 〈v1, . . . , vn〉 for F n for both the domain and codomain. We are then
interested in the matrix representing LA with respect to this new basis α. In that
case, let P be the matrix whose columns are v1, . . . , vn, and we get the commutative
diagram

F n F n

F n Fm

P−1 ∼

A

P−1∼

B

and the matrix we are looking for is

B = P−1AP.
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We say B is formed by conjugating A.

Exercise. Say A,B ∈ Mn×n(F ) are similar and write A ∼ B if there exists an in-
vertible matrix P ∈Mn×n(F ) such that P−1AP = B. Prove that ∼ is an equivalence
relation. What does an equivalence class represent?

Example. Consider the real matrix

A =

 0 1 1
1 0 1
1 1 0


What matrix represents the linear function LA : F 3 → F 3 with respect to the ordered
basis α = 〈(1, 1, 1), (1, 0,−1), (0, 1,−1)〉?

Solution. Use the vectors of α as columns to define the matrix

P =

 1 1 0
1 0 1
1 −1 −1

 .

Compute the inverse of P using our algorithm (omitted):

P−1 =


1
3

1
3

1
3

2
3
−1

3
−1

3

−1
3

2
3
−1

3

 =
1

3

 1 1 1
2 −1 −1
−1 2 −1

 .

Then the matrix representing LA with respect to the ordered basis α is

B = P−1AP =

 2 0 0
0 −1 0
0 0 −1

 .

Notice that the matrix representing LA in the example becomes the much simpler
diagonal matrix after a change of basis. We can then apply an important trick to
compute Ak for all integers k. First note that

A2 =

 2 1 1
1 2 1
1 1 2

 , A3 =

 2 3 3
3 2 3
3 3 2

 , A4 =

 6 5 5
5 6 5
5 5 6

 , A5 =

 10 11 11
11 10 11
11 11 10

 .

What happens in general? Here is the trick that can be applied here:

Bk = (P−1AP )k
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= (P−1AP )(P−1AP )(P−1AP ) · · · (P−1AP )(P−1AP )︸ ︷︷ ︸
k times

= P−1A(PP−1)A(PP−1)A(PP−1) · · · (PP−1)A(PP−1)AP

= P−1AkP.

Since Bk = P−1AkP , we can solve for Ak by multiply both sides of the equality on
the left by P and on the right by P−1 to get

Ak = PBkP−1 =

 1 1 0
1 0 1
1 −1 −1

 2 0 0
0 −1 0
0 0 −1

k1

3

 1 1 1
2 −1 −1
−1 2 −1



=

 1 1 0
1 0 1
1 −1 −1

 2k 0 0
0 (−1)k 0
0 0 (−1)k

1

3

 1 1 1
2 −1 −1
−1 2 −1



=
1

3

 2k + 2 (−1)k 2k − (−1)k 2k − (−1)k

2k − (−1)k 2k + 2 (−1)k 2k − (−1)k

2k − (−1)k 2k − (−1)k 2k + 2 (−1)k



=
1

3

 a b b
b a b
b b a


where for k = 1, 2, 3, . . .,

a =

{
2k + 2 if k is even

2k − 2 if k is odd
and b =

{
2k − 1 if k is even

2k + 1 if k is odd.

Exercise. Show that 2k ± 2 and 2k ± 1 are divisible by 3 for k = 1, 2, . . .



Week 7, Friday: Determinants

Definition. The determinant is a multilinear, alternating function of the rows of
square matrix, normalized so that its value on the identity matrix is 1.

To explain this terminology, start with the fact that the determinant is a function of
the form

det : Mn×n(F )→ F.

Given a square matrix A ∈ Mn×n(F ) with rows r1, . . . , rn ∈ F n, we write det(A) =
det(r1, . . . , rn), i.e., we consider the determinant as a function of the rows of A. The
determinant function has the following properties:

(a) Multilinear. The determinant is a linear function with respect to each row. Thus,
if r1, . . . , rn are the row vectors of A (elements of F n), r′i is another row vector,
and λ ∈ F , then

det(r1, . . . , ri−1, λ ri + r′i, ri+1, . . . , rn) = λ det(r1, . . . , ri−1, ri, ri+1, . . . , rn)

+ det(r1, . . . , ri−1, r
′
i, ri+1, . . . , rn).

The above expresses the fact that, in particular, the determinant is linear with
respect to the i-th row.

(b) Alternating. The determinant is zero if two of its arguments are equal:

det(r1, . . . , rn) = 0

if ri = rj for some i 6= j.

(c) Normalized. det(In) = det(e1, . . . , en) = 1.

We will prove the following theorem later:

Theorem. For each n ≥ 0, there exists a unique determinant function.
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For now we will accept this theorem on faith and explore some of the consequences.
The following proposition shows that we can compute the determinant through row
reduction.

Proposition 1. (Behavior of the determinant with respect to row operations.)
Let A,B ∈Mn×n(F ).

(a) If B is obtained from A by swapping two rows, then det(B) = − det(A).

(b) If B is obtained from A by scaling a row by a scalar λ, then det(B) = λ det(A)
(even if λ = 0).

(c) If B is obtained from A by adding a scalar multiple of one row to another row,
then det(B) = det(A).

Proof. For part (a), let r1, . . . , rn ∈ F n be the rows of A. For ease of notation, we
will assume that B is obtained from A by swapping the first two rows. The argument
we present clearly generalizes to the case of swapping arbitrary rows. Replace the
first two rows of A with r1 + r2 to obtain a matrix whose determinant is 0 by the
alternating property:

0 = det(r1 + r2, r1 + r2, r3, . . . , rn).

Expand my multilinearity to get:

0 = det(r1 + r2, r1 + r2, r3, . . . , rn)

= det(r1, r1 + r2, r3, . . . , rn) + det(r2, r1 + r2, r3, . . . , rn)

= det(r1, r1, r3, . . . , rn) + det(r1, r2, r3, . . . , rn)

+ det(r2, r1, r3, . . . , rn) + det(r2, r2, r3, . . . , rn)

= 0 + det(A) + det(B) + 0.

It follows that det(B) = − det(A).

Part (a) follows immediately from the fact that the determinant is linear with respect
to each row:

det(r1, . . . , ri−1, λri, ri+1, . . . , rn) = λ det(r1, . . . , ri−1, ri, ri+1, . . . , rn).

For Part (c), we use multilinearity and the alternating property. For ease of notation,
we’ll consider the case where B is obtained from A by adding a multiple of row 1 to
row 2:

det(B) = det(r1, λr1 + r2, r3, . . . , rn)
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= λ det(r1, r1, r3, . . . , rn) + det(r1, r2, r3, . . . , rn)

= 0 + det(r1, r2, r3, . . . , rn)

= det(A).

Corollary. Let A ∈ Mn×n(F ), and let E be the reduced row echelon form of A.
Then there exists a non-zero k ∈ F such that det(A) = k det(E).

Proof. The proof is immediate from Proposition 1.

Example 1. Here we compute the determinant of a 2× 2 matrix using the fact that
the determinant is a multilinear alternating mapping with value 1 on the identity
matrix.

det

(
a b
c d

)
= det((a, b), (c, d))

= det(a e1 + b e2, c e1 + d e2)

= a det(e1, c e1 + d e2) + b det(e2, c e1 + d e2)

= ac det(e1, e1) + ad det(e1, e2) + bc det(e2, e1) + bd det(e2, e2)

= 0 + ad det(e1, e2) + bc det(e2, e1) + 0

= ad det(e1, e2)− bc det(e1, e2)

= ad det

(
1 0
0 1

)
− bc det

(
1 0
0 1

)
= ad · 1− bc · 1 = ad− bc.

Example 2. Here is an example of using row reduction to compute the determinant
of a matrix. Let

A =

 1 2 −2
9 4 0
2 2 4


Using Proposition 1, we see that

det(A) = det

 1 2 −2
9 4 0
2 2 4
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= det

 1 2 −2
0 −14 18
0 −2 8



= − det

 1 2 −2
0 −2 8
0 −14 18



= 2 det

 1 2 −2
0 1 −4
0 −14 18



= 2 det

 1 2 −2
0 1 −4
0 0 −38



= 2(−38) det

 1 2 −2
0 1 −4
0 0 1



= 2(−38) det

 1 0 0
0 1 0
0 0 1


= 2(−38) = −76.

Example 3.

det


4 2 −3 8
0 5 1 3
0 0 2 6
0 0 0 3

 = (4 · 5 · 2 · 3) det


1 1/2 −3/2 4
0 1 1/5 3/5
0 0 1 3
0 0 0 1



= (4 · 5 · 2 · 3) det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= (4 · 5 · 2 · 3) · 1 = 120.
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A matrix like that in the previous example, which has only zero entries below the
diagonal, is called upper-triangular. So A ∈ Mn×n(F ) is upper-triangular if Aij = 0
whenever i > j.

Proposition 2. The determinant of an upper-triangular matrix is the product of its
diagonal elements.

Proof. Let A be upper-triangular, and let E be its reduced echelon form. From
Proposition 1, we know that det(A) = k det(E) for some non-zero constant k. Imagine
row-reducing an upper-triangular matrix, and you will see that E has a row of zeros
if and only if A has some diagonal entry equal to zero. If E has a row of zeros,
then det(E) = 0. To see this, suppose the rows of E are r1, . . . , rn with rn = ~0. By
multilinearity, we have:

det(E) = det(r1, . . . , rn−1,~0)

= det(r1, . . . , rn−1, 0 ·~0)

= 0 · det(r1, . . . , rn−1,~0)

= 0.

So if A has a diagonal entry equal to 0, then det(E) = 0, which implies det(A) =
k det(E) = 0. So the result holds in this case.

Next, suppose that A has no diagonal entries equal to 0. Compute det(A) using
multilinearity:

det(A) = det



a11 a12 a13 a14 . . . a1n
0 a22 a23 a24 . . . a2n
0 0 a33 a34 . . . a3n
0 0 0 a44 . . . a4n

. . .
...
ann



= a11 · · · ann det



1 a12/a11 a13/a11 a14/a11 . . . a1n/a11
0 1 a23/a22 a24/a22 . . . a2n/a22
0 0 1 a34/a33 . . . a3n/a33
0 0 0 1 . . . a4n/a44

. . .
...
1


= a11 · · · ann det(In)
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= a11 · · · ann.

Above, it is clear that once we get to the case of all 1s on the diagonal, we can
row-reduce the matrix to the identity by adding multiples of rows to other rows—
operations that do not change the determinant.

Proposition 3. Let A ∈Mn×n(F ). The following are equivalent:

(a) det(A) 6= 0,
(b) rank(A) = n,
(c) A is invertible, i.e., A has an inverse.

Proof. Given our algorithm for computing the inverse of a matrix, the equivalence of
parts 2 and 3 is evident. To show that parts 1 and 2 are equivalent, recall that by
Proposition 1, we have det(A) = k det(E) where E is the reduced echelon form of A
and k is a non-zero scalar. Thus, det(A) = 0 if and only if det(E) = 0. The rank
of A is n if and only if E = In, in which case det(A) = k 6= 0. The rank of A is
strictly less than n if and only if E has a row of zeros. Since E is upper-triangular,
Proposition 2 implies that E has a row of zeros if and only if det(E) = 0.

To come:

(a) Define the transpose, At of A by Atij := Aji. Then detAt = detA, and thus, the
determinant is also the unique multilinear, alternating, normalized function on
the columns of a matrix.

(b) The determinant is multiplicative: det(AB) = det(A) det(B).

(c) The determinant may be calculated by “expanding” along any row or column.

(d) We have the following formula for the determinant

detA =
∑
σ∈Sn

sgn(σ)A1σ(1) · · ·Anσ(n)

where Sn is the collection of all permutations of (1, . . . , n) and sgn(σ) is the sign
of the permutation σ (i.e., 1 if the permutation is formed by an even number of
flips and −1 if it is formed by an odd number of flips).

(e) Over the real numbers, the determinant gives the signed volume of the paral-
lelepiped spanned by the rows (or by the columns) of the matrix.
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Goal: Our goal for the day is to show that the determinant of a matrix and the
determinant of the transpose of that matrix are equal. It then immediately follows
that the determinant is not only a multilinear, alternating, normalized function of the
rows of a matrix (by definition), but it is also a multilinear, alternating, normalized
function of its columns. So one may use both row and column operations to compute
the determinant.

Elementary matrices. An n × n matrix is called an elementary matrix if it is
obtained from the identity matrix, In, through a single elementary row operation
(scaling a row by a nonzero scalar, swapping rows, or adding one row to another).

Here is why elementary matrices are interesting: Let E be an n×n elementary matrix
corresponding to some row operation and let A be any n× k matrix. Then EA is the
matrix obtained from A by performing that row operation. Thus, you can perform
row operations through multiplication by elementary matrices.

Example. Let

A =

 1 2 3 4
3 0 −1 2
1 5 6 7

 .

To find the elementary matrix that will subtract 3 times the first row of A from the
second row, we do that same operation to the identity matrix: 1 0 0

0 1 0
0 0 1

 r2→r2−3r1−−−−−−→

 1 0 0
−3 1 0

0 0 1

 =: E1.

Multiplying by E1 on the left performs the same elementary row operation on A:

E1A =

 1 0 0
−3 1 0

0 0 1

 1 2 3 4
3 0 −1 2
1 5 6 7

 =

 1 2 3 4
0 −6 −10 −10
1 5 6 7

 .
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Next, let E2 be the elementary matrix corresponding to subtracting the first row from
the third:  1 0 0

0 1 0
0 0 1

 r3→r3−r1−−−−−−→ =

 1 0 0
0 1 0
−1 0 1

 =: E2.

Multiplying E1A on the left by E2 performs the corresponding row operation:

E2E1A = E2(E1A) =

 1 0 0
0 1 0
−1 0 1

 1 2 3 4
0 −6 −10 −10
1 5 6 7

 =

 1 2 3 4
0 −6 −10 −10
0 3 3 3

 .

Next, swap the second and third rows: 1 0 0
0 1 0
0 0 1

 r2↔r3−−−→

 1 0 0
0 0 1
0 1 0

 =: E3,

and, thus,

E3E2E1A = E3(E2E1A) =

 1 0 0
0 0 1
0 1 0

 1 2 3 4
0 −6 −10 −10
0 3 3 3

 =

 1 2 3 4
0 3 3 3
0 −6 −10 −10

 .

To continue row reduction, we would now scale the second row by 1
3
: 1 0 0

0 1 0
0 0 1

 r2↔r2/3−−−−−→

 1 0 0
0 1

3
0

0 0 1

 =: E4,

and, thus,

E4E3E2E1A = E4(E3E2E1A) =

 1 0 0
0 1

3
0

0 0 1

 1 2 3 4
0 3 3 3
0 −6 −10 −10

 =

 1 2 3 4
0 1 1 1
0 −6 −10 −10

 .

As illustrated in the example, above, performing a sequence of row operations to a
matrix is equivalent to multiplying on the left by a sequence of elementary matrices.
In particular, if Ã is the reduced row echelon form of A, then there are elementary
matrices E1, . . . , E` such that

Ã = E` · · ·E2E1A.
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Determinant of the transpose. If A is an m× n matrix, recall that its transpose
is the matrix At defined by

(At)ij := Aji.

Thus, the rows of At are the columns of A.

Example If

A =

(
1 2 3
4 5 6

)
and B =

(
5 2
1 3

)
,

then

At =

 1 4
2 5
3 6

 and Bt =

(
5 1
2 3

)
.

Our goal now is to prove the non-obvious fact that for an n× n matrix A,

det(A) = det(At).

Example. We have seen that

det

(
a b
c d

)
= ad− bc.

Note that we also have

det

((
a b
c d

)t)
= det

(
a c
b d

)
= ad− bc.

Recall that we can compute the determinant of A by performing row operations and
keeping track of swaps and scalings of rows. Once we have shown that det(A) =
det(At), it follows that, in order compute the determinant of A, we may also use
column operations (again keeping track of swaps and scalings). That’s because row
operations applied to At are the same as column operations applied to A.

To prove this fact about determinants of transposes, we need the following theorem,
proposition, and lemma:

Theorem. Let A and B be n× n matrices. Then

det(AB) = det(A) det(B).

Proof. Upcoming homework.
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Proposition. Let A and B be n× n matrices. Then

(a) (AB)t = BtAt.

(b) If A is invertible, then (At)−1 = (A−1)t.

Proof. Upcoming homework.

Lemma. Let E be an elementary matrix. Then det(E) = det(Et) 6= 0.

Proof. There are three cases to consider1:

(a) Suppose E is formed from In by swapping rows i and j. In this case, Et is
also formed from In by swapping rows i and j. Thus, E = Et, and det(Et) =
det(E) = −1.

(b) Suppose E is formed from In by scaling row i by λ 6= 0. In this case, Et is also
formed from In by scaling row i by λ. So in this case, det(Et) = det(E) = λ.

(c) Suppose E is formed from In by adding λri to rj for rows ri 6= rj. Then Et

is formed from In by adding λrj to ri. So in this case, det(Et) = det(E) =
det(In) = 1.

We can now prove our main result:

Theorem. Let A be an n× n matrix. Then det(A) = det(At).

Proof. Let Ã be the reduced echelon form for A. Then Ã = In if and only if rankA =
n. So if Ã 6= In, we have rank(A) < 0, which means that det(A) = 0. Since row
rank and column rank are equal, we would then have rank(At) = rank(A) < n, which
means det(At) = 0, too. So the theorem holds in that case.

Now consider that case where Ã = In. Thus, by applying row operations to A, we
arrive at the identity matrix. Choose elementary matrices Ei such that

E` · · ·E2E1A = In. (21.1)

Taking determinants and using the fact that determinants preserve products yields:

det(E`) · · · det(E2) det(E1) det(A) = 1. (21.2)

1The reader is strongly encouraged to create examples of each of these three cases.
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Taking transposes in equation (21.1) gives

AtEt
1 · · ·Et

` = I tn = In.

Take determinants and use the fact from the Lemma that det(E) = det(Et) if E is
an elementary matrix to get

det(At) det(E1) · · · det(E`) = 1. (21.3)

The result follows by equating (21.2) and (21.3) and using the fact that the determi-
nant of an elementary matrix is nonzero (so that we may cancel). �

Corollary. The determinant is a multilinear, alternating, normalized function of the
columns of a square matrix.

For instance, the above corollary says the in order to compute the determinant, one
may use column operations to simplify the calculation, just as we used row operations.
Further, one may mix row and column operations, when convenient, as in the following
example.

Example. Let

M =


1 −1 −1 −1
−2 3 0 1
−2 1 4 −1
−5 1 1 5

 .

To compute the determinant of M , add the first row to each other row to get

M ′ =


1 −1 −1 −1
−1 2 −1 0
−1 0 3 −2
−4 0 0 4

 ,

then, in M ′, add columns 2, 3, and 4 to column 1 to get

M ′′ =


−2 −1 −1 −1

0 2 −1 0
0 0 3 −2
0 0 0 4

 .

The types of row and column operations we used to get from M to M ′′ have no effect
on the determinant, and thus,

det(M) = det(M ′) = det(M ′′) = −2 · 2 · 3 · 4 = −48.
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Remark. Start with In and perform a sequence of row operations to get a ma-
trix B ∈ Mn×n(F ). Then multiplying A ∈ Mn×k(F ) on the left by B gives the
matrix BA ∈ Mn×k(F ) formed from A by performing the same sequence of row op-
erations. Similarly, one can start with In, perform column operations to produce a
matrix C ∈ Mn×n(F ), then multiplying D ∈ Mk×n(F ) on the right by C give the
matrix DC ∈Mk×n(F ) obtained by performing the column operations on D.



Week 8, Wednesday: Permutation expansion of the determi-
nant

Definition. A permutation of a set X is a bijective mapping of X to itself. If σ
and τ are permutations of X, then so is their composition σ ◦ τ . The collection
of all permutations of X along with the binary operation ◦ given by composition
of functions is called the symmetric group on X. For each nonnegative integer n,
let [n] := {1, . . . , n}. The symmetric group on [n] is called the symmetric group of
degree n and denoted by Sn.

Example. Here are six elements of S3:

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3 .

Note. Define the factorial of a natural number as follows: 0! = 1, and for each
integer n > 0, recursively define n! = n(n−1)!. Thus, 1! = 1, 2! = 2 ·1, 3! = 3 ·2 ·1 =
6, 4! = 4 · 3 · 2 · 1 = 24, etc. Then the number of elements of Sn = n! since we can
uniquely determine every permutation σ by first choosing one of n values for σ(1),
then any of the remaining values n − 1 for σ(2), then one of the remaining n − 2
values of σ(3), etc.

Definition. Let σ ∈ Sn. The permutation matrix corresponding to σ is the n × n
matrix Pσ whose i-th row is eσ(i). Another way of saying this is that, Pσ is ob-
tained by permuting the columns of the identity matrix, In, according to σ: put ej
in column σ(j).

118
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Example. Let σ ∈ S3 be defined by σ(1) = 2, σ(2) = 3, and σ(3) = 1. Then

Pσ =

 0 1 0
0 0 1
1 0 0

 .

Exercise. Let σ, τ ∈ Sn and let A be an n× n matrix.

(a) If the rows of A are (r1, . . . , rn), then the i-th row of PσA is rσ(i). In other words,
the multiplying on the left by Pσ permutes the rows of A in the same way that
the rows of In are permuted to form Pσ. We leave it as an exercise to the reader
to investigate the effect of multiplying A on the right by P .

(b) Pσeσ(i) = ei, and PσPτ = Pτ◦σ. (Note that the order of σ and τ have switched.)

Rook placements. Permutation matrices are exactly those that have a single 1 in
each row and in each column. Thus, if the 1s in a permutation matrix were replaced by
rooks in the game of chess, then no rook would be attacking another. We sometimes
call a permutation matrix a rook placement.

Definition. The sign of σ ∈ Sn is

sign(σ) = det(Pσ) = ±1.

A permutation is even if its sign is 1 and odd if its sign is −1.

Every permutation matrix Pσ may be obtained from In through a sequence of trans-
positions of columns, i.e., a sequence in which each step consists of swapping two
columns. In the example above, Pσ is formed by permuting columns 1, 2, and 3 of I3
as follows:

1 1

2 2

3 3 .

This permutation could have been obtained from two transpositions:

1 1 1

2 2 2

3 3 3 .
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Thus, every permutation matrix can be obtained as the product of permutation ma-
trices corresponding to transpositions. Swapping two columns in a matrix changes the
sign of the determinant. Therefore, even though a permutation σ may be realized in
different ways as sequences of transpositions, the parity (evenness or oddness) of the
number of transpositions required is well-defined: the number is even if det(Pσ) = 1
and odd if det(Pσ) = −1.

Theorem. Let A be an n× n matrix. Then

det(A) =
∑
σ∈Sn

sign(σ)A1σ(1)A2σ(2) · · ·Anσ(n).

Example. Consider the case n = 3. Then

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Each term A1σ(1)A2σ(2) · · ·Anσ(n) in the formula in the theorem should be thought of
as the product of the entries corresponding to a rook placement. The permutations,
rook placements, and corresponding summands appear in Figure 22.1.1

Proof of permutation formula for the determinant. We want to compute

det(A11e1 + A12e2 + · · ·+ A1nen, . . . , An1e1 + An2e2 + · · ·+ Annen).

Each of the n components in the above expression consists of n summands where
each of the summands has the form aijej. Using the multilinear properties of the
determinant, when we expand the above express, we get n! terms, each of the form

A1j1A2j2 · · ·Anjn det(e1j1 , e2j2 , . . . , enjn).

If any pair of these ekjk is the same, this term will evaluate to 0. Thus, for the nonzero
terms, e1j1 , e2j2 , . . . , enjn must be some permutation of e1, . . . , en. We then have

det(e1j1 , e2j2 , . . . , enjn) = ±1,

depending on the sign of the permutation σ defined by

σ(1) = j1, σ(2) = j2, . . . , σ(n) = jn,

and we can write

A1j1A2j2 · · ·Anjn det(e1j1 , e2j2 , . . . , enjn) = sign(σ)A1σ(1)A2σ(2) · · ·Anσ(n).

1Note that the sign of the permutation is also equal to (−1)c where c is the number of times two
arrows cross in the diagram for the permutation in the left-most column.
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1 1

2 2

3 3

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 a11a22a33

1 1

2 2

3 3

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 a12a23a31

1 1

2 2

3 3

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 a13a21a32

1 1

2 2

3 3

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 −a12a21a33

1 1

2 2

3 3

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 −a13a22a31

1 1

2 2

3 3

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 −a11a23a32

.

Figure 22.1: Computing the determinant of the 3 × 3 matrix A = (aij) via rook
placements. The determinant is the sum of the terms in the right-most column.
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See the next pages for all of the details of the above proof in the case n = 3.
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Let’s look at the proof again in the case n = 3. The i-th row vector of A is

ri = ai1e1 + ai2e2 + ai3e3.

To compute the determinant of A we start by expanding using multilinearity:

det(A) = det(r1, r2, r3)

= det(a11e1 + a12e2 + a13e3, a21e1 + a22e2 + a23e3, a31e1 + a32e2 + a33e3)

= det(a11e1, a21e1 + a22e2 + a23e3, a31e1 + a32e2 + a33e3)

+ det(a12e2, a21e1 + a22e2 + a23e3, a31e1 + a32e2 + a33e3)

+ det(a13e3, a21e1 + a22e2 + a23e3, a31e1 + a32e2 + a33e3)

= det(a11e1, a21e1, a31e1 + a32e2 + a33e3)

+ det(a11e1, a22e2, a31e1 + a32e2 + a33e3)

+ det(a11e1, a23e3, a31e1 + a32e2 + a33e3)

+ det(a12e2, a21e1, a31e1 + a32e2 + a33e3)

+ det(a12e2, a22e2, a31e1 + a32e2 + a33e3)

+ det(a12e2, a23e3, a31e1 + a32e2 + a33e3)

+ det(a13e3, a21e1, a31e1 + a32e2 + a33e3)

+ det(a13e3, a22e2, a31e1 + a32e2 + a33e3)

+ det(a13e3, a23e3, a31e1 + a32e2 + a33e3)

There is one more step to go in the complete expansion, at which point, we’ll have 27
terms. For completeness, I’ll list these all on the next page.
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= det(a11e1, a21e1, a31e1)

+ det(a11e1, a21e1, a32e2)

+ det(a11e1, a21e1, a33e3)

+ det(a11e1, a22e2, a31e1)

+ det(a11e1, a22e2, a32e2)

+ det(a11e1, a22e2, a33e3)

+ det(a11e1, a23e3, a31e1)

+ det(a11e1, a23e3, a32e2)

+ det(a11e1, a23e3, a33e3)

+ det(a12e2, a21e1, a31e1)

+ det(a12e2, a21e1, a32e2)

+ det(a12e2, a21e1, a33e3)

+ det(a12e2, a22e2, a31e1)

+ det(a12e2, a22e2, a32e2)

+ det(a12e2, a22e2, a33e3)

+ det(a12e2, a23e3, a31e1)

+ det(a12e2, a23e3, a32e2)

+ det(a12e2, a23e3, a33e3)

+ det(a13e3, a21e1, a31e1)

+ det(a13e3, a21e1, a32e2)

+ det(a13e3, a21e1, a33e3)

+ det(a13e3, a22e2, a31e1)

+ det(a13e3, a22e2, a32e2)

+ det(a13e3, a22e2, a33e3)

+ det(a13e3, a23e3, a31e1)
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+ det(a13e3, a23e3, a32e2)

+ det(a13e3, a23e3, a33e3)
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Use linearity to pull out the constants:

= a11a21a31 det(e1, e1, e1)

+ a11a21a32 det(e1, e1, e2)

+ a11a21a33 det(e1, e1, e3)

+ a11a22a31 det(e1, e2, e1)

+ a11a22a32 det(e1, e2, e2)

+ a11a22a33 det(e1, e2, e3)

+ a11a23a31 det(e1, e3, e1)

+ a11a23a32 det(e1, e3, e2)

+ a11a23a33 det(e1, e3, e3)

+ a12a21a31 det(e2, e1, e1)

+ a12a21a32 det(e2, e1, e2)

+ a12a21a33 det(e2, e1, e3)

+ a12a22a31 det(e2, e2, e1)

+ a12a22a32 det(e2, e2, e2)

+ a12a22a33 det(e2, e2, e3)

+ a12a23a31 det(e2, e3, e1)

+ a12a23a32 det(e2, e3, e2)

+ a12a23a33 det(e2, e3, e3)

+ a13a21a31 det(e3, e1, e1)

+ a13a21a32 det(e3, e1, e2)

+ a13a33a21 det(e3, e1, e3)

+ a13a22a31 det(e3, e2, e1)

+ a13a22a32 det(e3, e2, e2)

+ a13a22a33 det(e3, e2, e3)

+ a13a23a31 det(e3, e3, e1)
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+ a13a23a32 det(e3, e3, e2)

+ a13a23a33 det(e3, e3, e3)
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Now we use the alternating property of the determinant. If any row is repeated, the
determinant is 0. Getting rid of those terms leaves:

det(A) = a11a22a33 det(e1, e2, e3)

+ a11a23a32 det(e1, e3, e2)

+ a12a21a33 det(e2, e1, e3)

+ a12a23a31 det(e2, e3, e1)

+ a13a21a32 det(e3, e1, e2)

+ a13a22a31 det(e3, e2, e1).

Next notice that each determinant appearing above is the determinant of a permuta-
tion matrix. For instance, the term

a12a23a31 det(e2, e3, e1)

contains det(e2, e3, e1), which is the determinant of the permutation matrix for the
permutation σ(1) = 2, σ(2) = 3, and σ(3) = 1. We have

a12a23a31 det(e2, e3, e1) = a1σ(1)a2σ(2)a3σ(3) det(Pσ)

= a1σ(1)a2σ(2)a3σ(3)sign(σ).

In this way, the six terms in the sum can be expressed as follows:

det(A) =
∑
σ∈S3

det(Pσ)a1σ(1)a2σ(2)a3σ(3)

=
∑
σ∈S3

sign(Pσ)a1σ(1)a2σ(2)a3σ(3).
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Laplace expansion of the determinant. Let A be an n×n matrix. For each i, j ∈
{1, 2, . . . , n}, define Aij to be the matrix formed by removing the i-th row and j-th
column from A. Fix k ∈ {1, 2, . . . , n}. Then

det(A) =
n∑
j=1

(−1)k+jAkj det(Akj).

This expresses det(A) in terms of an alternating sum of determinants of (n−1)×(n−1)
matrices. We call this expanding det(A) along the k-th row. Applying the formula
recursively leads to a complete evaluation of det(A). Since, det(A) = det(At), you
can also calculate the determinant by recursively expanding along columns.

Example. Let

A =

 1 2 3
2 0 1
1 1 1

 .

Let’s calculate the determinant by expanding along the first row:

det(A) = 1 · det

(
0 1
1 1

)
− 2 · det

(
2 1
1 1

)
+ 3 · det

(
2 0
1 1

)
= (−1)− 2(1) + 3(2) = 3.

To check, let’s expand along the second row, instead, noting the signs:

det(A) = −2 · det

(
2 3
1 1

)
0 · det

(
1 3
1 1

)
− 1 · det

(
1 2
1 1

)
= −2(−1) + 0(−2)− 1(−1) = 3.

Finally, let’s expand along the third column:

det(A) = 3 · det

(
2 0
1 1

)
− 1 · det

(
1 2
1 1

)
+ 1 · det

(
1 2
2 0

)
129
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= 3(2)− 1(−1) + 1(−4) = 3.

Note: if your matrix has a particular row or column with a lot of 0s in it, you might
want to expand along that row or column since a lot of the terms will be 0. For
example, to compute

det

 1 3 0
3 2 3
1 4 0

 ,

expand along the third column:

0 (blah)− 3 det

(
1 3
1 4

)
+ 0 (blah) = −3(1) = −3.

The “blah”s are there instead of explicit determinants since they are being multiplied
by 0. Their exact values don’t matter, so we don’t need to waste time calculating
them. We will not prove the formula for the Laplace expansion. It is very similar to
that for the permutation expansion.

Existence and uniqueness of the determinant. Recall the definition that started
our discussion of the determinant:

Definition. The determinant is a multilinear, alternating function det : Mn×n(F )→
F of the rows of square matrix, normalized so that its value on the identity matrix
is 1.

The definition says “the determinant”, but for all we knew, there could be several
different functions Mn×n(F ) → F all satisfying the criteria of being multilinear,
alternating, and normalized. Or, it is possible there are no functions that satisfy the
criteria? So the definition requires us to prove that, in fact, there exists exactly one
determinant function (for each n).

Just after defining the determinant, we showed that if d : Mn×n(F ) → F is any
multilinear, alternating, normalized function, then a choice of a row reduction for A ∈
Mn×n(F ) determines the value of d(A). The subtlety here is that, there are many
different sequence of row operations that would produced the row echelon form for A.
Do each of these produce the same value for d(A) (in other words, is d well-defined)?
We never proved that they would.

So let’s begin again and consider the particular function d : Mn×n(F ) → F defined
recursively as the Laplace expansion of a matrix along its first row:

d(A) :=
n∑
j=1

(−1)1+jA1j d(A1j) (23.1)



Week 8, Friday 131

if n ≥ 1, and by d(A) = a if A = [a] is a 1 × 1 matrix. This function d is well-
defined—there are no choices to be made is in calculation.

Exercise. Prove that d is multilinear, alternating, and normalized (i.e., its value
at In is 1).

Thus, we see there exists at least one determinant function.

Having defined d by (23.1), now note that in addition to calculating d using the given
recursive formula, since d is multilinear, alternating, and normalize, its value can
be determined via row reductions, just as before. What’s new now is that we see
that no matter which choices are made in the row reduction, we must get the value
determined by (23.1).

In sum, we have shown that a multilinear, alternating, normalized function exists
and is unique. Its value is completely determined by choosing any sequence of row
operations reducing a matrix to its row echelon form, and the choice of the sequence of
row operations does not matter. So far, we have three different methods for calculating
the determinant: using row operations, summing over permutations, and via Laplace
expansion along any row or column.

bonus content

Generalized Laplace expansion. Let A ∈ Mn×n(F ), and fix a subset of k
rows ri1 , . . . , rik of A where 1 ≤ k ≤ n. Let I = {i1, . . . , ik} be the indices of
these rows. For any subset J ⊆ {j1, . . . , jk}, define |J | := j1 + · · ·+ jk, and define

AIJ = the k × k submatrix of A formed by the intersection of
rows indexed by I and the columns indexed by J

ĀIJ = the (n− k)× (n− k) submatrix of A formed by the
intersection of rows indexed by {1, . . . , n} \ I and the
columns indexed by {1, . . . , n} \ J .

Then
det(A) =

∑
J

(−1)|I|+|J | det(AIJ) det(ĀIJ)

where the sum is over all k-element subsets J of {1, . . . , n}.1

Example. The case where k = 1 is the ordinary Laplace expansion formula.

1Since det(A) = det(At), there is a similar formula for expansion along a fixed set of k columns.
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Example. Let

A =


1 7 0 5
2 2 2 2
5 1 4 6
0 6 7 3

 .

We will compute det(A) using the generalize Laplace expansion along the first two
rows of A. So, using the notation from above, I = {1, 2} ⊂ {1, 2, 3, 4}. There are six
choices for a pair of columns:

J ∈ ({1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}) .

The term in the expansion corresponding to J = {1, 3} would be

(−1)|I|+|J | det(AIJ) det(ĀIJ) = (−1)(1+2)+(1+3) det

(
1 0
2 2

)
det

(
1 6
6 3

)
= (−1)(1 · 2− 0 · 2)(1 · 3− 6 · 6) = 66.

The entire expansion is

det(A) =
∑
J

(−1)|I|+|J | det(AIJ) det(ĀIJ)

=
∑
J

(−1)3+|J | det(A{1,2}J) det(Ā{1,2}J)

= (−1)3+(1+2) det(A{1,2}{1,2}) det(Ā{3,4}{3,4}) + (−1)3+(1+3) det(A{1,2}{1,3}) det(Ā{3,4}{2,4})

+ (−1)3+(1+4) det(A{1,2}{1,4}) det(Ā{3,4}{2,3}) + (−1)3+(2+3) det(A{1,2}{2,3}) det(Ā{3,4}{1,4})

+ (−1)3+(2+4) det(A{1,2}{2,4}) det(Ā{3,4}{1,3}) + (−1)3+(3+4) det(A{1,2}{3,4}) det(Ā{3,4}{1,2})

= det(A{1,2}{1,2}) det(Ā{3,4}{3,4})− det(A{1,2}{1,3}) det(Ā{3,4}{2,4})

+ det(A{1,2}{1,4}) det(Ā{3,4}{2,3}) + det(A{1,2}{2,3}) det(Ā{3,4}{1,4})

− det(A{1,2}{2,4}) det(Ā{3,4}{1,3}) + det(A{1,2}{3,4}) det(Ā{3,4}{1,2})
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Continuing the calculation:

A =


1 7 0 5
2 2 2 2
5 1 4 6
0 6 7 3



det(A) = det(A{1,2}{1,2}) det(Ā{3,4}{3,4})− det(A{1,2}{1,3}) det(Ā{3,4}{2,4})

+ det(A{1,2}{1,4}) det(Ā{3,4}{2,3}) + det(A{1,2}{2,3}) det(Ā{3,4}{1,4})

− det(A{1,2}{2,4}) det(Ā{3,4}{1,3}) + det(A{1,2}{3,4}) det(Ā{3,4}{1,2})

= det

(
1 7
2 2

)
det

(
4 6
7 3

)
− det

(
1 0
2 2

)
det

(
1 6
6 3

)
+ det

(
1 5
2 2

)
det

(
1 4
6 7

)
+ det

(
7 0
2 2

)
det

(
5 6
0 3

)
− det

(
7 5
2 2

)
det

(
5 4
0 7

)
+ det

(
0 5
2 2

)
det

(
5 1
0 6

)
= (−12)(−30)− (2)(−33) + (−8)(−17) + (14)(15)− (4)(35) + (−10)(30)

= 332.

Example. Let

A =


3 2 1 0 0
1 2 4 0 0
0 1 7 0 0
1 2 1 4 7
3 4 2 9 3

 .

The generalized Laplace expansion along the first three rows has only two nonzero
terms, yielding

det(A) = det

 3 2 1
1 2 4
0 1 7

 det

(
4 7
9 3

)
.
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Parametrizing linear subspaces

Let V be a finite-dimension vector space of dimension n, and let 1 ≤ k ≤ n. Our goal
today is to construct a geometric object whose points are in one-to-one correspondence
with the k-dimensional subspaces of V .

Projective space. We start with the case k = 1. Let W ⊆ V be a one-dimensional
subspace of V , and let {w} be a basis for W . Then w 6= 0 and

W = Span{w} = {λw : λ ∈ F} .

One might be tempted to say that W is w in the sense that W is completely deter-
mined by w. From that point of view, V \ {0} would be exactly the geometric object
we are looking for: it points correspond to one-dimensional subspace (by take the
span of a point). We have a mapping of sets

V \ {0} → one-dimensional subspaces of V

u 7→ Span{u}.

There only one problem: the above mapping is not a bijection—so it is not the one-
to-one correspondence we are seeking. It is surjective since every one-dimensional
subspace is spanned by some vector, but it is not injective since a one-dimensional
space may have many different bases. How far away is the mapping from being
injective? When do two different nonzero vectors have the same span? The answer:
exactly when the two vectors are scalar multiples of each other.

The above discussion motivates the following equivalence relation:

Definition. If w,w′ ∈ V \ {0}, write w ∼ w′ if there exists a nonzero scalar λ ∈ F
such that w′ = λw.

Exercise. The relation ∼ is an equivalence relation on V \ {0}.

Definition. The set of equivalences classes for ∼ is projective space on V , de-
noted P(V ).

134
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Using the usual notation for a set modulo an equivalence relation, we write

P(V ) := (V \ {0})
/
∼ = {[w] : w ∈ V \ {0}}

where [w] is the equivalence class of w, i.e., the set of all nonzero scalar multiples
of w. We then have a bijection of sets

P(V )→ one-dimensional subspaces of V

[u] 7→ Span{u}.
From now on, we use this bijection to identify each point [u] ∈ P(V ) with its corre-
sponding one-dimensional subspace Span(u) ⊆ V .

We will next consider a special case, which should justify calling projective space a
“geometric” object.

Definition. Real projective n-space P(Rn+1), denoted Pn.

A point in Pn is is a one-dimensional subspace of Rn+1, which is the same as a line
through the origin. So we think of Pn as the set of lines through the origin in Rn+1.

We explain now why Pn should be considered n-dimensional in some sense. For i =
1, . . . , n+ 1, define

Ui = {[(a1, . . . , an+1)] ∈ Pn : ai 6= 0} .
Note that Ui is well-defined: if [(a1, . . . , an+1)] = [(b1, . . . , bn+1)], then there exists
a nonzero λ ∈ R such that (a1, . . . , an+1) = λ(b1, . . . , bn+1). Thus, ai = λbi, and it
follows that ai 6== 0 if and only if bi 6= 0. Let [(a1, . . . , an+1)] ∈ Pn. Then there exists
at least one i such that ai 6= 0. We can then scale by 1

ai
to get another name for the

same point in projective space:

(a1, . . . , an) ∼ 1

ai
(a1, . . . , an+1) ⇒ [(a1, . . . , an)] = [(a1/ai, . . . , ai/ai, . . . , an+1/ai)])

= [(a1/ai, . . . , 1, . . . , an+1/ai)]).

In this way, every point in Ui ⊂ Pn is represented by whose i-th coordinate is 1. We
have bijection Rn ↔ Ui that sends (b1, . . . , bn) to the equivalence class [(b1, . . . , bi−1, 1, bi, . . . , bn)].
(We have just squeezed a 1 between bi−1 and bi+1.) The point, finally, is that it only
takes n number to identify any point in Ui.

Grassmannians. We know generalize the above discussion to find a space parametriz-
ing k-dimensional subspaces of V for any 1 ≤ k ≤ n. Let W ⊆ V , and let (w1, . . . , wk)
be a basis for W . We place these basis vectors in as the rows of a k × n matrix:

M =

 w11 · · · w1n
...

. . .
...

wk1 · · · wkn
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where wi = (wi1, . . . , win). Conversely, if M is any k × n matrix of rank k, then the
rowspace of M is a subspace of V of dimension k. So we get a surjection

k × n matrices of rank k → k-dimensional subspace of V

M 7→ rowspace(M).

This mapping is not injective because a k-dimensional subspace of V may have many
different bases. In fact, given M with rows w1, . . . , wk spanning a k-dimensional
subspace of V , we can describe all of the matrices M ′ with the same row space as M :
they are exactly the matrices obtained by performing row operations to M . This, in
turn, means that M ′ must be of the form PM where P is k×k invertible matrix. (The
matrix P is the product of elementary matrices corresponding to the row operations
that transform M to M ′.) We proceed as we did earlier for projective space (i.e., for
the case k = 1).

Definition. If M and M ′ are k× n matrices of rank k, write M ∼M ′ if there exists
an invertible k × k matrix P such that M ′ = PM .

Exercise. The relation ∼ is an equivalence relation on the set of k × n matrices of
rank k.

Definition. The set of equivalences classes for ∼ is the Grassmannian, denoted
G(k, n).

Example. If F = R, we have Pn = G(1, n+ 1).

If J is a subset of {1, . . . , n} of size k, let UJ be the subset of G(k, n) consisting of
equivalence classes of matrices M such that the submatrix of M consisting of the
columns with indices in J has rank k. (Note: this notion is well-defined, just as the
Ui were well-defined, above.) Then each element of UJ has a unique representative M
that is a k× n matrix whose submatrix consisting of the columns in J is the identity
matrix.



Week 9, Wednesday: Determinants and volume

The parallelogram spanned by v, w ∈ R2 is

P = {λv + µw : λ, µ ∈ [0, 1]}

where [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}:

v + w

v

w

Theorem. Let A(v, w) be the area of the parallelogram spanned by v, w ∈ R2. Then

A(v, w) = | det(v, w)|,

where det(v, w) is the determinant of the matrix with rows v and w.

Note: Since the determinant of a square matrix and its transpose are the same,
A(v, w) is also the absolute value of the matrix whose columns are v and w.

Proof of theorem. Define SA(v, w) to be the signed area defined in the worksheet.
We show that SA satisfies the properties required of a determinant function. Then,
since the determinant is unique, it follows that SA(v, w) = det(v, w) and the result
follows since A(v, w) = |SA(v, w)|.

• Normalized. We have SA(e1, e2) = 1:

e1 = (1, 0).

e2 = (0, 1)

π
2

137
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The sign is positive since the angle from e1 to e2 is less than π.

• Alternating. We have SA(v, v) = 0 since in this case, the corresponding
parallelogram is degenerate.
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• Multilinear.

– SA(cv, w) = cSA(v, w) and SA(v, cw) = cSA(v, w):

c > 0

v

w

cv

c < 0

v

w

−vcv

The areas are scaled by |c| in either case since the base is scaled by |c| and
the height does not change. The drawing assumes that the angle from v
to w is less than π. There is a similar drawing for the case where the angle
is greater than π. Either way, in the case where c < 0 note that although
SA(cv, w) and SA(v, w) have opposite signs, SA(cv, w) and cSA(v, w) have
the same sign.

Similar drawings show that SA(v, cw) = cSA(v, w).

– SA(v + u,w) = SA(v, w) + SA(u,w):

v

u
w

v + u

a

a′

b′

b

Note how to dissect the u-w and v-w parallelograms to get the (v + u)-
w parallelogram: Cut section a in the u-w parallelogram and place it at
section a′, then cut section b in the v-w parallelogram and place it at
section b′. The result is two parallelograms that can exactly cover the
(v + u)-w parallelogram.
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Of course, our drawing is just one case among the many possible angles
between pairs of v, u, and w.
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Definition. The parallelepided spanned by v1, . . . , vn ∈ Rn is

P = {λ1v1 + · · ·+ λnvn : λi ∈ [0, 1] for i = 1, . . . , n} ,

.

It turns out that the volume of P is given by the determinant of the matrix whose
row (or columns) are v1, . . . , vn:

vol(P ) = | det(v1, . . . , vn)|.

Note that one of the vertices of P is the origin (set λ1 = · · · = λn = 0). To get an
arbitrary parallelepiped in Rn we can just translate by any vector u ∈ Rn:

P + u := {p+ u : p ∈ P} = {λ1v1 + · · ·+ λnvn + u : 0 ≤ λi ≤ 1 for i = 1, . . . , n} .

The volume does not change:

vol(P + u) = | det(v1, . . . , vn)|.

Theorem. Let P be the parallelepided spanned by v1, . . . , vn ∈ Rn. Let A ∈
Mn×n(R), and let LA : Rn → Rn be the corresponding linear function, LA(x) = Ax.
Then LA(P ) is the parallelepiped spanned by the vectors Av1, . . . , Avn, and

vol(LA(P )) = | det(A)|vol(P ).

Moreover, LA(P + u) = LA(P ) + LA(u). Thus, application of LA scales the volumes
of parallelepipeds in Rn be a factor of | det(A)|.

Proof. We have x ∈ LA(P ) if and only if there exist λ1, . . . , λn ∈ [0, 1] such that

x = A(λ1v1 + · · ·+ λnvn) = λ1Av1 + · · ·+ λnAvn,

i.e., if and only if x is in the parallelepiped determined by Av1, . . . , Avn.

Let B be the matrix with columns v1, . . . , vn. Then vol(P ) = | det(B)|, Note that AB
is the matrix whose columns are Av1, . . . , Avn. It follows that

vol(LA(P )) = | det(AB)| = | det(A)|| det(B)|.

We have LA(P + u) = LA(P ) + LA(u) since LA is linear.



Week 9, Wednesday 142

Remark. To approximate the volume of an arbitrary shape in Rn, one can try to
dissect the shape into a union of parallelepipeds. One definition of the volume of an
arbitrary shape is derived by taking limits of such approximations. One can then ask
how the volume of a shape S changes under the application of a function f : Rn → Rn.
If the function is “nice” (differentiable), then at each point p in the shape, one creates
a linear approximation Df(p) of the function f (called the derivative of f at p), akin
to LA, above. Further assuming that f is injective, the volume of the image of the
shape is then given by the change of variables formula in multivariable calculus:

vol(f(S)) =

∫
p∈S
| det(Df(p))|.

In light of the theorem we just proved, the determinant |Df(p)| should be thought of
as a scaling factor. It tells us how much f scales volumes (infinitesimally) at p.



Week 9, Friday: Eigenvectors and eigenvalues

Definition. Let f : V → V be a linear transformation of a vector space V over F .
A nonzero vector v ∈ V is an eigenvector for f with eigenvalue λ ∈ F if

f(v) = λv.

If A ∈Mn×n(F ), a nonzero vector v ∈ F n is an eigenvector for A with eigenvalue λ ∈
F if

Av = λv.

Thus, eigenvectors and eigenvalues for A are the same as eigenvectors and eigenvalues
for the associated linear function fA : F n → F n (defined by fA(v) = Av).

Here is why we like eigenvectors: Suppose that α = 〈v1, . . . , vn〉 is an ordered basis
of eigenvectors for f : V → V with corresponding eigenvalues λ1, . . . , λn, i.e., f(vi) =
λivi for i = 1, . . . , n. Then the matrix [f ]αα representing f with respect to the basis α
for the domain and codomain is the diagonal matrix diag(λ1, . . . , λn).

Example. Let

A =

(
−1 2
−6 6

)
.

with corresponding linear function

fA : R2 → R2

(x, y) 7→ (−x+ 2y,−6x+ 6y).

It turns out that (2, 3) and (1, 2) are eigenvectors for fA with eigenvalues 2 and 3,
respectively: (

−1 2
−6 6

)(
2
3

)
=

(
4
6

)
= 2

(
2
3

)
(
−1 2
−6 6

)(
1
2

)
=

(
3
6

)
= 3

(
1
2

)
.
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Find the matrix representing fA with respect to the ordered basis

α = 〈(2, 3), (1, 2)〉.

To do this we write the image of each vector in α as a linear combination of the
vectors in α and pull off the coefficients to create columns:

fA(2, 3) = 2(2, 3) = 2 · (2, 3) + 0 · (1, 2)

fA(1, 2) = 3(1, 2) = 0 · (2, 3) + 3 · (1, 2).

Hence,

[fA]αα =

(
2 0
0 3

)
= diag(2, 3).

That is the point: a basis of eigenvectors gives a matrix representative that is diagonal,
which is the simplest type of matrix to think about. Let’s think abstractly about
what just happened. The matrix A is the matrix representing fA with respect to the
standard basis, and the matrix

D = diag(2, 3) =

(
2 0
0 3

)
.

represents fA with respect to the basis α. Let φα be the mapping that takes coordi-
nates with respect to α. We get the commutative diagram:

R2 R2

R2 R2.

φα ∼

A

φα∼

D

(2, 3)

(1, 2)

2(2, 3)

3(1, 2)

(1, 0)

(0, 1)

2(1, 0)

3(0, 1)

Reviewing something we talked about earlier in the semester: The matrix for φα
would be a bit of a chore to write down. It’s j-column would be the image of ej.
So we would have to write each ej as a linear combination of the basis vectors in α.
However, the inverse of φα is easy to write down. Take a look at the commutative
diagram. By construction of φα, we have

φ−1α (1, 0) = (2, 3) and φ−1α (0, 1) = (1, 2).
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So the matrix for φ−1α is

P =

(
2 1
3 2

)
.

So the matrix for φα is P−1. Therefore, another way to write the commutative
diagram is

R2 R2

R2 R2.

P−1 ∼

A

P−1∼

D

From contemplating this diagram, we see that

D = P−1AP.

Summary: having found eigenvectors (2, 3) and (1, 2), we place those eigenvectors as
columns in a matrix P , and then P−1AP is a diagonal matrix with the corresponding
eigenvalues on the diagonal.

To generalize:

Let A ∈ Mn×n(F ) with corresponding linear function fA : F n → F n. Suppose
α = 〈v1, . . . , vn〉 is an ordered basis of eigenvectors with corresponding eigen-
values λ1, . . . , λn, i.e., Avi = λivi for i = 1, . . . , n. Let P be the matrix whose
columns are v1, . . . , vn. Then

P−1AP = D,

where D = diag(λ1, . . . , λn), and we have a commutative diagram

F n F n

F n F n.

P−1 ∼

A

P−1∼

D

How does one find eigenvectors and eigenvalues? Let A ∈ Mn×n(F ) with
corresponding function fA : F n → F n (so fA(v) := Av). We are looking for a nonzero
vector v ∈ F n and a scalar λ such that Av = λv. To achieve that, the following
argument is of central importance:

Av = λv ⇔ (A− λIn)v = 0 ⇔ v ∈ ker(A− λv).
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This says that:

λ ∈ F is an eigenvalue for A if and only if ker(A− λIn) 6= {0}.

So we would like to determine those λ for which the kernel of A − λIn is nontrivial,
for which the following is key:

ker(A− λIn) 6= {0} ⇔ rank(A− λIn) < n ⇔ det(A− λIn) = 0.

Let’s apply this to the matrix A in our example:

det

((
−1 2
−6 6

)
− λ

(
1 0
0 1

))
= det

((
−1 2
−6 6

)
−
(
λ 0
0 λ

))

= det

(
−1− λ 2
−6 6− λ

)
= (−1− λ)(6− λ)− 2(−6)

= λ2 − 5λ+ 6

= (λ− 2)(λ− 3).

Thus, ker(A−λIn) 6= {0} if and only if λ = 2, 3. So the eigenvalues for A are 2 and 3.

Having found the eigenvalues, how do we go about finding corresponding eigen-
values? For each eigenvalue λ, there are nonzero elements ker(A− λIn). So we just
apply our algorithm for finding the kernel of a matrix:

λ = 2

A− 2I2 =

(
−1 2
−6 6

)
−
(

2 0
0 2

)
=

(
−3 2
−6 4

)
.

So we need to find (x, y) ∈ R2 satisfying(
−3 2
−6 4

)(
x
y

)
=

(
0
0

)
.

Therefore, we perform Gaussian elimination:(
−3 2
−6 4

)
 

(
1 −2

3

0 0

)
.

Hence,

ker(A− 2I2) =

{(
2

3
y, y

)
: y ∈ R

}
.
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For a basis we could take
(
2
3
, 1
)
, or easier, (2, 3).

Similarly for the other eigenvalue:

λ = 3

A− 3I2 =

(
−1 2
−6 6

)
−
(

3 0
0 3

)

=

(
−4 2
−6 3

)

 

(
1 −1

2

0 0

)
.

Hence,

ker(A− 3I2) =

{(
1

2
y, y

)
: y ∈ R

}
.

For a basis we could take
(
1
2
, 1
)
, or easier, (1, 2).

Let A ∈Mn×n(F ). The eigenvalues for A are exactly the solutions λ to

det(A− λIn) = 0.

If λ ∈ F is an eigenvalue, it corresponding eigenvectors are the nonzero vectors
in

ker(A− λIn).

Use our algorithm to find a basis for the matrix A− λIn.
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Recall from last time: an eigenvector for a linear transformation f : V → V is a
nonzero vector v ∈ V such that

f(v) = λv

for some λ ∈ F . In that case, λ is called an eigenvalue for f .

Definition. Let V be an n-dimensional vector space. A linear mapping f : V → V is
diagonalizable if there exists an ordered basis α of V such that [f ]αα = diag(λ1, . . . , λn).
A matrix A ∈ Mn×n(F ) is diagonalizable if its corresponding linear mapping fA is
diagonalizable.

Proposition. A linear mapping f : V → V is diagonalizable if and only if V has a
basis consisting solely of eigenvectors for f .

Proof. Let α be any ordered basis. Then [f ]αα is diagonal if and only if, for each j =
1, . . . , n, the j-th column of [f ]αα has a single non-zero entry, in the j-th row. That j-th
column is determined by

f(vj) = 0 · v1 + · · ·+ 0 · vj−1 + λj · vj + 0 · vj+1 + · · ·+ 0 · vn,

for some scalar λj. However, the above condition is equivalent to f(vj) = λjvj
for j = 1, . . . , n, i.e., to α being a basis of eigenvectors.

Example. Not all linear transformations of a vector space to itself are diagonalizable.
For instance, consider the linear transformation f : R2 → R2 that is rotation of the
plane by 90◦, having matrix

A =

(
0 −1
1 0

)
.

(1, 0)

(0, 1)

(−1, 0)

148



Week 10, Monday 149

There is no point 0 6= v ∈ R2 such that Av = λv for some λ. (The matrix is
diagonalizable over C, though. Can you find two eigenvectors? Don’t get your hopes
up, though—there are matrices that are not diagonalizable over C.)

Suppose f : F n → F n is a linear transformation, and let A be the matrix correspond-
ing to f , i.e., the matrix whose j-th column is f(ej) for all j (i.e., the matrix for f with
respect to the standard basis for F n). Suppose we can find a basis α = 〈v1, . . . , vn〉 of
eigenvectors for f with corresponding, not necessarily distinct, eigenvalues λ1, . . . , λn.
Let P be the matrix with columns v1, . . . , vn. Then, as we saw last time,

P−1AP = diag(λ1, . . . , λn).

Definition. Two n × n matrices A and B over F are similar or conjugate if there
exists an invertible matrix P such that A = P−1BP .

Exercise. The reader should verify that similarity is an equivalence relation.

Remark. Let f : V → V be a linear transformation of a finite-dimensional vector
space, and let α and β be two ordered bases for V . Then we saw earlier in the
semester that the matrices A := [f ]αα and B := [f ]ββ are conjugate, i.e., the matrices
for f with respect to any two bases for V are conjugate. The converse is also true:
every matrix conjugate to A is the matrix representing f with respect to some basis.

Finding eigenvectors and eigenvalues. Let A ∈ Mn×n(F ) with corresponding
linear function

fA : F n → F n

v 7→ Av.

As mentioned last time, the following argument is of central importance in the story
of eigenvectors and eigenvalues: We are looking for nonzero v ∈ F n and any λ ∈ F
such that Av = λv. We have

Av = λv ⇔ (A− λIn)v = 0 ⇔ v ∈ ker(A− λv).

This says that:

λ ∈ F is an eigenvalue for A if and only if ker(A− λIn) 6= {0}.
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So we would like to determine those λ for which the kernel of A − λIn is nontrivial.
The following is key:

ker(A− λIn) 6= {0} ⇔ rank(A− λIn) < n ⇔ det(A− λIn) = 0.

Definition. The characteristic polynomial of A is

pA(x) := det(A− xIn).

We have just seen that

λ ∈ F is an eigenvalue for A if and only if it is a zero of the characteristic
polynomial for A, i.e., if and only if pA(λ) = 0.

Example. Let

A =

 2 −7 3
0 −5 3
0 0 2

 .

The characteristic polynomial of A is

pA(t) = det

 2 −7 3
0 −5 3
0 0 2

− x
 1 0 0

0 1 0
0 0 1



= det

 2 −7 3
0 −5 3
0 0 2

−
 x 0 0

0 x 0
0 0 x



= det

 2− x −7 3
0 −5− x 3
0 0 2− x


= (2− x)(−5− x)(2− x)

= −(x− 2)2(x+ 5).

Thus, pA(x) = 0 if and only if x ∈ {2,−5}. So the eigenvalues of A are 2 (with
multiplicity 2), and −5.
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Recall that our goal is to diagonalize A by finding a basis of eigenvectors. That’s
not always possible, but we can try. The first step is to compute the zeros of the
characteristic polynomial, pA(x). This tells us the eigenvalues for A. We then need to
find the eigenvectors to go along with these eigenvalues. Recall that nonzero v ∈ F n

is an eigenvector for A with eigenvalue λ if and only v ∈ ker(A− λIn).

Definition. Let λ be an eigenvalue of the n×n matrix A over F . Then the eigenspace
for λ is

Eλ := E(A)λ := {v ∈ F n : Av = λv} = ker(A− λInv).

The eigenspace, being the kernel of a matrix, is a linear subspace of F n.

The second step in trying to diagonalizeA is to compute a basis for each eigenspace Eλ.

Example. We have seen that the eigenvalues for

A =

 2 −7 3
0 −5 3
0 0 2

 .

are 2 (with multiplicity 2) and −5. Let’s compute the corresponding eigenspaces in
the case F = R.

E2

A− 2I3 =

 2 −7 3
0 −5 3
0 0 2

−
 2 0 0

0 2 0
0 0 2



=

 0 −7 3
0 −7 3
0 0 0



−→

 0 1 −3/7
0 0 0
0 0 0

 .

The first and third variables are free. Hence,

ker(A− 2I3) =
{

(x, 3
7
z, z) : x, z ∈ R

}
.
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For a basis we could take
{

(1, 0, 0), (0, 3
7
, 1)
}

, or easier, {(1, 0, 0), (0, 3, 7)}.

E−5

A− (−5)I3 =

 2 −7 3
0 −5 3
0 0 2

+

 5 0 0
0 5 0
0 0 5



=

 7 −7 3
0 0 3
0 0 7



−→

 1 −1 0
0 0 1
0 0 0

 .

Hence,
ker(A+ 5I3) = {(y, y, 0) : y ∈ R} .

For a basis we could take (1, 1, 0).

Thus, we have found three eigenvectors (1, 0, 0), (0, 3, 7), and (1, 1, 0). It turns out
that eigenvectors for distinct eigenvalues are always linearly independent (we’ll see
this later). Hence, we have found a basis of eigenvectors. Thus, A is diagonalizable,
and if we use these eigenvectors as the columns for a matrix:

P =

 1 0 1
0 3 1
0 7 0

 ,

then one may check that
P−1AP = diag(2, 2,−5).

Example. Now consider a matrix that is just slightly different from A:

B =

 2 1 3
0 −5 3
0 0 2

 .

The characteristic polynomial for A and for B are the same:

det (B − xI3) = det

 2− x 1 3
0 −5− x 3
0 0 2− x

 = −(x− 2)2(x+ 5).
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Thus, A and B have the same eigenvalues. Let’s compute the eigenspaces for B
over R.

E2

B − 2I3 =

 2 1 3
0 −5 3
0 0 2

−
 2 0 0

0 2 0
0 0 2



=

 0 1 3
0 −7 3
0 0 0



−→

 0 1 0
0 0 1
0 0 0

 .

Thus, ker(B−2I3) has basis {(1, 0, 0)}. It is only one-dimensional. Recall that ker(A−
2I3) was two-dimensional. This is a crucial difference.

E−5

A− (−5)I3 =

 2 1 3
0 −5 3
0 0 2

+

 5 0 0
0 5 0
0 0 5



=

 7 1 3
0 0 3
0 0 7



−→

 1 1/7 0
0 0 1
0 0 0

 .

Hence,
ker(A− 3I3) = {(y,−y/7, 0) : y ∈ R} .

For a basis we could take (−7, 1, 0).

Our calculations prove that, at most, we can find two linearly independent vectors
that are eigenvectors for B. Thus, there is no basis for R3 consisting of eigenvectors
for B. Therefore, B is not diagonalizable.
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Diagonalizing Algorithm Let A ∈Mn×n(F ).

(a) Find the eigenvalues of A as the zeros of its characteristic polynomial,

pA(x) = det(A− xIn).

(b) For each eigenvalue λ, compute a basis for the eigenspace
Eλ = kerA− λIn.

(c) The matrix A is diagonalizable if and only if of the total number
of eigenvectors in the bases found in the previous step is n. i.e.,
if and only if the sum of the dimensions of the eigenspaces is n.
If so, the union of these vectors is a basis for F n. Create a matrix P whose
columns are these vectors. Then P−1AP = D, where D is a diagonal
matrix with the eigenvalues along the diagonal, and we get a corresponding
commutative diagram:

F n F n

F n F n.

P−1 ∼

A

P−1∼

D

The matrix P−1, considered as a linear function, takes coordinates with
respect to the basis of eigenvalues.

Remark. An n × n matrix A is diagonalizable if and only if it has n linearly inde-
pendent eigenvectors. Step (c) of the diagonalization algorithm depends on a fact we
will prove next time: eigenvectors with distinct eigenvalues are linearly independent.
(We compute bases for each eigenspace, and of course the elements in a basis are
linearly independent. But when we combine the bases for all of the eigenspaces, why
is the resulting set independent?)
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Before getting started, we make an observation which should have probably already
been mentioned:

Proposition. Let A,B be n × n matrices representing a linear function f : V → V
with respect to different bases. Then their characteristic polynomials are the same:
pA(x) = pB(x).

Proof. We have A = P−1BP for some n× n matrix P . Then

pA(x) = det(A− xIn)

= det(P−1BP − xIn)

= det(P−1BP − xP−1InP )

= det(P−1BP − P−1(xIn)P ) (x is a scalar)

= det(P−1(B − xIn)P )

= det(P−1) det(B − xIn) det(P )

= det(B − xIn).

For the last step, recall that det(P−1) = det(P )−1, which follows from multiplicativity
of the determinant:

1 = det(In) = det(P−1P ) = det(P−1) det(P ).

Thus, it makes sense to talk about the characteristic polynomial of a linear
transformation: it the characteristic polynomial of any matrix representing the
transformation.

Last time, we discussed the following algorithm that determines whether a matrix is
diagonalizable and, if it is, shows how to diagonalize it.

155
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Diagonalization Algorithm Let A ∈Mn×n(F ).

(a) Find the eigenvalues of A as the zeros of its characteristic polynomial, pA(x) =
det(A− xIn).

(b) For each eigenvalue λ, compute a basis for the eigenspace Eλ = ker(A− λIn).

(c) The matrix A is diagonalizable if and only if of the total number of
eigenvectors in the bases found in the previous step is n. In other
words, A is diagonalizable if and only if

∑
λ dimEλ = n where the sum is over

all eigenvalues λ of A. If so, then the union of these vectors is a basis for F n.
Create a matrix P whose columns are these vectors. Then P−1AP = D, where D
is a diagonal matrix with the eigenvalues along the diagonal, and we get a cor-
responding commutative diagram:

F n F n

F n F n.

P−1 ∼
A

P−1∼
D

The matrix P−1, considered as a linear function, takes coordinates with respect
to the basis of eigenvalues.

As mentioned last time, Step (c) of the diagonalization algorithm depends on the fact
that eigenvectors with distinct eigenvalues are linearly independent. (Thus, when we
combine the bases for all of the eigenspaces, we end up with a linearly independent
set.) We now prove this.

Proposition. Let V be any vector space, and let f : V → V be a linear transforma-
tion. Let v1, . . . , vk ∈ V be eigenvectors for f with corresponding eigenvalues λi:

f(vi) = λivi

for i = 1, . . . , k. Suppose λ1, . . . , λk are distinct. Then v1, . . . , vk are linearly inde-
pendent.

Proof. We will prove this by induction on k. The case k = 1 is OK since, by definition,
an eigenvector is a nonzero vector. Suppose v1, . . . , vk−1 are linearly independent for
some k > 1 and that

a1v1 + · · ·+ akvk = 0
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for some ai ∈ F . Let idV be the identity transformation defined by idV (v) = v for
all v ∈ V . Apply the linear transformation f−λkidV to the above dependence relation
to get

(f − λkidV )(a1v1 + · · ·+ akvk) = (f − λkidV )(0) = 0

⇒ f(a1v1 + · · ·+ akvk)− λkidV (a1v1 + · · ·+ akvk) = 0

⇒ (a1λ1v1 + · · ·+ akλkvk)− (a1λkv1 + · · ·+ akλkvk) = 0

⇒ a1(λ1 − λk)v1 + · · ·+ ak−1(λk−1 − λk)vk−1 + ak(λk − λk)vk = 0

⇒ a1(λ1 − λk)v1 + · · ·+ ak−1(λk−1 − λk)vk−1 = 0

Since v1, . . . , vk−1 are linearly independent, all the coefficients are zero:

a1(λ1 − λk) = · · · = ak−1(λk−1 − λk) = 0.

Since the λi are distinct, this implies a1 = · · · = ak−1 = 0. Therefore, the original
equation, a1v1 + · · · + akvk = 0 becomes akvk = 0. Since vk is an eigenvector, it is
nonzero. Hence, ak = 0, as well.

Corollary. Suppose dimV = n and f : V → V is a linear transformation. Then if f
has n distinct eigenvalues, it is diagonalizable.

Proof. Each eigenvalue has at least one corresponding eigenvector. From the above
proposition, if f has n distinct eigenvalues, then it has n linearly independent eigen-
vectors. Since V has dimension n, these eigenvectors form a basis for V . Let α be an
ordered basis consisting of those eigenvectors. Then [f ]αα is diagonal.

Remark. The Proposition implies that the union of bases for the eigenspaces of A
forms a linearly independent sets. For instance, for convenience, suppose that A has
three (distinct) eigenvalues λ1, λ2, and λ3, and suppose the corresponding eigenspaces
have bases {u1, . . . , up}, {v1, . . . , vq}, and {w1, . . . , wr}, respectively. We would like
to show that the union of these sets is linearly dependent. So suppose we have a
relation

a1u1 + · · ·+ apup + b1v1 + · · ·+ bqvq + c1w1 + · · ·+ crwr = 0.

Let u =
∑p

i=1 aiui, v =
∑q

i=1 bivi, and w =
∑r

i=1 ciwi. Then we have u ∈ Eλ1 ,
v ∈ Eλ2 , and w ∈ Eλ3 and

u+ v + w = 0.

By the Proposition, must have u = v = w = 0. Otherwise, this relation would be
a nontrivial linear relation among eigenvectors with distinct eigenvalues. (Note that
the only element of an eigenspace that is not an eigenvector is the zero vector.)
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Warning. The converse to the corollary is not true. For instance, consider the
identity function on F n. Its matrix is In, which is already diagonal, and 1 is its only
eigenvalue:

pIn(x) = det(In − xIn) = det ((1− x)In) = (1− x)n det(In) = (1− x)n.

So In is diagonalizable (in fact, it’s already diagonal) even though its eigenvalues are
not distinct.

Cramer’s rule

Definition. Let A ∈ Mn×n(F ). For i, j ∈ {1, . . . , n}, let Aij ∈ M(n−1)×(n−1)(F ) be
the matrix formed by removing the i-th row and j-th column of A. The i, j-th minor
of A is det(Aij), and the i, j-th cofactor of A is (−1)i+j det(Aij). The adjugate of A
is the matrix adj(A) ∈Mn×n(F ) with i, j-th coordinate

adj(A)ij = (−1)i+j det(Aji).

(Note we are using Aji, not Aij.)

Theorem (Cramer’s rule). Let A ∈Mn×n(F ) be an invertible matrix, and let b ∈
F n. Then the solution to the system of linear equations Ax = b is given by

xj =
det(Mj)

det(A)

for j = 1, . . . , n where Mj ∈ Mn×n(F ) is the matrix formed by replacing the j-th
column of A with b.

Corollary. If A ∈Mn×n(F ) is invertible, then

A−1 =
1

det(A)
adj(A)

where adj(A) is the adjugate of A, defined by

Corollary. If A ∈Mn×n(F ) is invertible and F = R of F = C, then

(a) the solution for the system of equations Ax = b is a continuous function of the
entries of A and b, and

(b) the entries of A−1 are continuous functions of the entries of A.

Proof. The entries in the determinant of a matrix B are polynomials in the entries
of B. A quotient f/g of polynomials f and g is a continuous function wherever g is
nonzero.
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Example. Consider the matrix

A =

 3 −1 6
−7 1 2

2 0 2

 .

The adjugate of A is

adj(A) =

 2 2 −8
18 −6 −48
−2 −2 −4

 .

For instance, to find the 1, 2-entry of adj(A) is

(−1)1+2 det(A2,1) = (−1)3 det

(
−1 6

0 2

)
= 2.

Using Cramer’s rule to compute the inverse of A, we get

A−1 =
1

det(A)
adj(A) = − 1

24

 2 2 −8
18 −6 −48
−2 −2 −4

 =

 −
1
12
− 1

12
1
3

−3
4

1
4

2
1
12

1
12

1
6

 .



Week 10, Friday: Algebraic and geometric multiplicity. Jor-
dan form.

When does a transformation fail to be diagonalizable? We now introduce a sequence
of ideas that will allow us to answer this question.

Example. Earlier, we considered the linear transformation R2 → R2 given by the
matrix

A =

(
0 −1
1 0

)
.

Geometrically, it rotates the plane counterclockwise by 90◦ and, hence, has no eigen-
vectors: an eigenvector would not rotate—it would just be scaled. The characteristic
polynomial of A is

pA(x) = det

(
−x −1
1 −x

)
= x2 + 1.

The equation x2 + 1 = 0 has no solutions over R, and hence, the transformation has
no eigenvalues.

Now consider the linear transformation f : C2 → C2 given by the same matrix A.
Over C we can solve x2 + 1 = 0 to find two eigenvalues, ±i. Each of these will
have at least one eigenvector, and eigenvectors for distinct eigenvalues are linearly
independent. Since C2 has dimension 2, that means we will get a basis of eigenvectors.
Let’s compute a basis for the eigenspace for i:

A− iI2 =

(
−i −1
1 −i

)
r1↔r2−−−→

(
1 −i
−i −1

)
r2↔r2+ir1−−−−−−→

(
1 −i
0 0

)
.

So the kernel of A − iI2 is {(iy, y) : y ∈ C}, which has basis {(i, 1)}. Similarly, the
eigenspace for −i has basis {(−i, 1)}. Check:

A

(
i
1

)
=

(
0 −1
1 0

)(
i
1

)
=

(
−1
i

)
= i

(
i
1

)

A

(
−i
1

)
=

(
0 −1
1 0

)(
−i
1

)
=

(
−1
−i

)
= −i

(
−i
1

)
.

160
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Letting

P =

(
i −i
1 1

)
,

we get

P−1AP =

(
i 0
0 −i

)
.

This example illustrates one obstacle to diagonalization: the characteristic polynomial
may not have enough roots in the field F .

Definition. A polynomial p ∈ F [x] splits over F if there exist c, λ1, . . . , λn ∈ F such
that

p(x) = c(x1 − λ1) · · · (x− λn).

Equivalently, p(x) had n roots (zeros), λ1, . . . , λn, in F . These λi need not be distinct.

Remark. Let F be any field, and let p(x) be a polynomial whose coefficients are
in F , i.e., p(x) ∈ F [x]. It turns out that there exists a field F ⊆ K such that p(x)
splits over K.

Example. The polynomial p(x) = x2 + 1 splits over C but not over R.

A useful fact from algebra:

Theorem. (Fundamental theorem of algebra) Every p ∈ C[x] splits over C.

Proposition. Let V be a vector space over F with dimV = n, and let f : V → V
be a linear transformation. If f is diagonalizable, then its characteristic polynomial
splits over F .

Proof. Let D = diag(λ1, . . . , λn) be a diagonal matrix representing f . Then the
characteristic polynomial for f (which, as we saw earlier, in the last lecture, does not
depend on the choice of matrix representative) is

pf (x) = pD(x) = det(D − xIn) = (λ1 − x) · · · (λn − x) = (−1)n(x1 − λ1) · · · (x− λn).

The converse of this proposition is not true:

Example. Let

A =

(
1 1
0 1

)
.
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The characteristic polynomial of A is

pA(x) = det(A− xI2)

= det

(
1− x 1

0 1− x

)
= (x− 1)2.

Thus, the characteristic polynomial splits over any field F . There is one eigenvalue, 1,
which occurs with algebraic multiplicity 2 (the precise definition of algebraic mul-
tiplicity appears below). Let’s proceed with the algorithm for diagonalization by
computing a basis for the eigenspace for 1, i.e., for ker(A− I2):(

1 1
0 1

)
−
(

1 0
0 1

)
=

(
0 1
0 0

)
.

Therefore, ker(A− I2) = {(x, 0) : x ∈ F}. A basis is {(1, 0)}. Thus, there is no basis
for F 2 consisting of eigenvectors: our theory says any eigenvector would have to have
eigenvalue 1, and the space of eigenvectors with eigenvalue 1 is only one-dimensional!

Definition. Let dimV < ∞. The algebraic multiplicity of an eigenvalue λ ∈ F for
a linear transformation f : V → V (or for any matrix representing f) is the largest
number m such that pf (x) = (x− λ)mq(x) for some polynomial q(x) ∈ F [x].

The geometric multiplicity of λ is the dimension of the eigenspace Eλ(f) for λ:

dimEλ(f) = dim ker(f − λ idV ).

So if A is a matrix representing f , then the geometric multiplicity of λ ∈ F is

dimEλ(A) = dim ker(A− λ In).

Remark. To rephrase something we already know: A ∈Mn×n(F ) is diagonalizable
if and only if the sum of its geometric multiplicities is n. That’s because this
is the only case in which we have enough linearly independent eigenvectors to form a
basis of eigenvectors.

Proposition. Let dimV <∞, and let λ be an eigenvalue of a linear transformation
f : V → V . Then the geometric multiplicity of λ is at most the algebraic multiplicity
of λ.
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Proof. Let v1, . . . , vk be a basis for ker(f − λ idV ), and extend it to a basis v1, . . . , vn
for all of V . We have f(vi) = λvi for 1 = 1, . . . , k. So with respect to our chosen
basis, the matrix representing f has the form

A :=

(
λIk B
0 C

)
,

where B and C are (n− k)× (n− k) matrices. So the characteristic polynomial for f
is

pf (x) = det

(
(λ− x)Ik B

0 C − xIn−k

)
= det((λ− x)Ik) det(C − xIn−k)

= (λ− x)k det(C − xIn−k)

= (λ− x)kq(x),

for some polynomial q(x). (To see the second equality, above, expand the determinant
in line 1 along the first column—there will only be one term, which will be λ−x times a
smaller determinant. Expand that determinant along its first column. Repeat k times,
each time picking up a factor of λ − x.) This shows that the algebraic multiplicity
of λ is at least k, the geometric multiplicity of λ.

Corollary. Let A ∈Mn×n(F ). Then A is diagonalizable if and only if its characteris-
tic polynomial splits over F and the geometric multiplicity and algebraic multiplicity
of each eigenvalue are equal.

Proof. Suppose that A is diagonalizable. We saw earlier in this lecture that the
characteristic polynomial for A then splits over F . So we can write

pA(x) = (−1)n
k∏
i−1

(x− λi)mi

where λ1, . . . , λk are the distinct eigenvalues of A. The degree of pA(x) is n (exercise!),
from which it follows that

∑k
i=1mi = n, i.e, the sum of the algebraic multiplicities

is n.

Let gi be the geometric multiplicity of eigenvalue λi. Since A is diagonalizable, we
know that the sum of its geometric multiplicities is also n.
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Therefore, we have n =
∑k

i=1 gi =
∑k

i=1mi = n, and by the Proposition, gi ≤ mi for
all i. Since the mi are nonnegative, it follows that mi = gi for all i.

Conversely, suppose that pA(x) splits and that the algebraic and geometric multiplic-
ities of each eigenvalue are equal. Factor pA(x) as above and use the same notation
for algebraic and geometric multiplicities. As before, since the degree of pA(x) = n,
we have n =

∑k
i=1mi. By assumption, mi = gi for all i. So it follows that the sum of

the geometric multiplicities is n, and hence, A is diagonalizable.

Jordan form. What can we say when a linear transformation is not diagonalizable?
Can we still choose a basis to make the matrix for the transformation simple in some
sense? We give one answer here. First, we need a couple definitions. A Jordan
block of size k for λ ∈ F is the k × k matrix with λs on the diagonal and 1s on the
“superdiagonal”:

Jk(λ) =



λ 1 0 0 · · · 0 0
0 λ 1 0 · · · 0 0
0 0 λ 1 · · · 0 0

...
. . .

...
0 0 0 0 · · · λ 1
0 0 0 0 · · · 0 λ


For example,

J4(3) =


3 1 0 0
0 3 1 0
0 0 3 1
0 0 0 3

 .

Note the following example of the special case of a Jordan block of size 1:

J1(5) = [5].

A matrix is in Jordan form if it is in block diagonal form with Jordan blocks for
various λ along the diagonal:

Jk1(λ1) 0 · · · 0
0 Jk2(λ2) · · · 0

0 0
. . . 0

0 0 · · · Jkm(λm)


For example, here is a matrix in Jordan form:



Week 10, Friday 165



2 1 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 1 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 4 1 0
0 0 0 0 0 0 4 1
0 0 0 0 0 0 0 4


.

It has two 2× 2 Jordan blocks for 2, a 1× 1 Jordan block for 5, and a 3× 3 Jordan
block for 4: 

J2(2) 0 0 0
0 J2(2) 0 0
0 0 J1(5) 0
0 0 0 J3(4)

 .

Theorem. Let dimV < ∞. Suppose f : V → V is a linear transformation over F
and that the characteristic polynomial for f splits, i.e., the field F contains all of
the zeros of the characteristic polynomial. Then there exists an ordered basis for V
such that the matrix representing f with respect to that basis is in Jordan form. The
Jordan form is unique up to a permutation of the Jordan blocks.

So a matrix is diagonalizable if and only if its characteristic polynomial splits and all
of its Jordan blocks have size 1. We also know that a matrix such as 5 1 0

0 5 0
0 0 2

 ,

which is already in Jordan form but not diagonal, is not diagonalizable.



Week 11, Monday: Walks on graphs

We have devoted a lot of energy to the problem of diagonalizing a matrix. One major
motivation for diagonalization is that it makes taking powers of a matrix easier.
Explicitly, suppose that A ∈ Mn×n(F ) is diagonalizable. So there exists a matrix P
such that

P−1AP = D = diag(λ1, . . . , λn).

It is easy to take powers of a diagonal matrix: D` = diag(λ`1, . . . , λ
`
n). Here is the

important trick:

D` = (P−1AP )`

= (P−1AP )(P−1AP )(P−1AP ) · · · (P−1AP )(P−1AP )

= P−1A(PP−1)A(PP−1)A(PP−1) · · · (PP−1)AP

= P−1A`P.

Therefore,
A` = PD`P−1 = P diag(λ`1, . . . , λ

`
n)P−1.

In general, there will be many fewer arithmetic operations required on the right-hand
side of this equation than on the left-hand side.

This lecture will consider one application of this idea.

Walks in graph. A graph (or network) consists of vertices connected by edges. Here
is an example with 4 vertices connected by 5 edges:

166
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v4 v2

v3

v1

The diamond graph.

A walk of length ` in a graph is a sequence of vertices u0u1 . . . u` where ui−1 is con-
nected to ui for i = 1, . . . , `. So the length is the number of edges traversed. In our
example, the following are walks from v1 to v4:

v1v4 and v1v2v3v4.

The first has length 1 and the second has length 3. We are interested in counting the
number of closed walks between vertices.

Definition. Let G be a graph with vertices v1, . . . , vn. The adjacency matrix of G
is the n× n matrix A = A(G) defined by

Aij =

{
1 if there is an edge connecting vi and vj

0 otherwise.

For example, the adjacency matrix of the diamond graph is


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 .

v1 v2 v3 v4
v1
v2
v3
v4

A =v4 v2

v3

v1

Theorem. Let A be the adjacency matrix for a graph G with vertices v1, . . . , vn, and
let ` ∈ Z ≥ 0. Then then number of walks of length ` from vi to vj is (A`)ij.

Proof. Homework.

Example. Consider the diamond graph and its adjacency matrix A, displayed above.
Then



Week 11, Monday 168

A0 = I4, A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 , A2 =


2 1 2 1
1 3 1 2
2 1 2 1
1 2 1 3

 , A3 =


2 5 2 5
5 4 5 5
2 5 2 5
5 5 5 4

 .

The highlighted entries in the matrix say there is 1 path of length 2 from v2 to v3
and there are 4 paths of length 3 from v2 to itself. Can you find them? (The answer
appears at the end of this lecture.)

So to count the number of walks, we need to compute powers of the adjacency matrix.
Here is some good news:

Theorem. If A is an n× n symmetric matrix (A = At) over the real numbers, then
it is diagonalizable over R.

Proof. We may prove this later in the semester. (To look it up online, search for the
“spectral theorem”, which is usually stated for the more general class of Hermitian
matrices. Over the real numbers, the Hermitian matrices are exactly the symmetric
matrices.)

This means that we can find a matrix P such that P−1AP = D, where D is the
diagonal matrix of the eigenvalues. Then A` = PD`P−1. So we can find a nice
closed form for the number of walks of length ` between any two vertices as a linear
expression in the `-th powers of the eigenvalues of A. If the eigenvalues are λ1, . . . , λn,
the equation A` = PD`P−1 immediately implies that for each pair of vertices vi and vj
there exist real numbers c1, . . . , cn, independent of `, such that the number of closed
walks of length ` from vi to vj is

c1λ
`
1 + · · ·+ cnλ

`
n.

The special case of closed walks is particularly nice.

Definition. A walk is closed if it begins and ends at the same vertex.

Definition. Let A be any n×n matrix. Then the trace of A is the sum of its diagonal
entries:

tr(A) =
n∑
i=1

Aii.

Proposition. Let A be the adjacency matrix of a graph G. Then the number of
closed walks in G of length ` is tr(A`).
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Proof. For each i = 1, . . . , n, the number of closed walks from vi to vi is (A`)ii.
Summing over i gives the total number of closed walks.

Proposition. Let A be any n × n matrix. Then the trace of A is the sum of its
eigenvalues, each counted according to its (algebraic) multiplicity.

Proof. Homework.

Corollary. Let A be the adjacency matrix of a graph G with n vertices, and
let λ1, . . . , λn ∈ R be its list of (not necessarily distinct) eigenvalues. Then the
number of closed walks in G of length ` is

∑n
i=1 λ

`
i .

Proof. The number of closed walks of length ` is tr(A`), which is the sum of the
eigenvalues of A`. By homework (an easy induction argument), if λ is an eigenvalue
of A, then λ` is an eigenvalue of A` with unchanged eigenspace. It follows that the
eigenvalues for A` are λ`1, . . . , λ

`
n.

Example. Let A be the adjacency matrix of the diamond graphG. The characteristic
polynomial of A is

det(A− xI4) = x4 − 5x2 − 4x = x(x+ 1)(x2 − x− 4).

Using the quadratic equation, we find the eigenvalues for A:

0,−1,
1 +
√

17

2
,
1−
√

17

2
.

Therefore, the number of closed walks in G of length ` is

w(`) = (0)` + (−1)` +

(
1 +
√

17

2

)`

+

(
1−
√

17

2

)`

,

where

(0)` =

{
1 if ` = 0

0 if ` > 0.

The following table gives the number of closed walks for ` = 0, 1, . . . , 6:

` 0 1 2 3 4 5 6
w(`) 4 0 10 12 50 100 298

Exercise. The complete graph, Kn, has vertices 1, . . . , n and an edge between every
pair of vertices. How many closed walks are there in Kn of lenght `?

Questions.
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(a) How would you generalize today’s ideas to the case of a directed graph (in which
the edges have directions)?

(b) How would you generalize today’s ideas to the case in which the edges have
weights? (A special case would be to let the weight of edge (u, v) be the prob-
ability that the edge is traversed given that the starting point is u. Another
possibility is to think of the weight as a cost for traveling across the edge.)

Answer to example on page 2: v2v4v3 has length 2 and the following have length 3:
v2v3v4v2, v2v4v3v2, v2v1v4v2, and v2v4v1v2.



Week 11, Wednesday: Inner product spaces

We now add structure to a vector space allowing us to define length and angles.

Definition. Let V be a vector space over a field F where F is either R or C. An
inner product on V is a function

〈 , 〉 : V × V → F

(x, y) 7→ 〈x, y〉

satisfying for all x, y, z ∈ V and c ∈ F :

(a) linearity: 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈cx, y〉 = c〈x, y〉.

(b) conjugate symmetry: 〈x, y〉 = 〈y, x〉.

(c) positive-definiteness: 〈x, x〉 ∈ R≥0, and 〈x, x〉 = 0 iff x = 0.

Note. If F = R, then an inner product is known as a non-degenerate symmetric
form. If F = C, an inner product is known as a non-degenerate Hermitian form.

Examples.

• The ordinary dot product on Rn: Here, V = Rn and

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x · y :=
n∑
i=1

xiyi = x1y1 + · · ·+ xnyn.

For example, in R3, we would have

〈(1, 2, 3), (2, 3, 4)〉 = 2+6+12 = 20 and 〈(1, 2, 3), (−2, 1, 0)〉 = −2+2+0 = 0.

• The ordinary inner product on Cn: Here, V = Cn and

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x · ȳ :=
n∑
i=1

xiȳi = x1ȳ1 + · · ·+ xnȳn.

171
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For example, in C2, we would have

〈(1 + i, 1− i), (1 + 2i, 4)〉 = (1 + i)(1 + 2i) + (1− i) 4

= (1 + i)(1− 2i) + (1− i) 4

= (3− i) + (4− 4i) = 7− 5i.

• Let V = CR([0, 1]) = {f : [0, 1]→ R : f is continuous}, the vector space of R-
valued continuous functions on the interval [0, 1], and

〈f, g〉 =

∫ 1

0

f(t)g(t) dt.

To check positive-definiteness, note that if f 6= 0, then f 2(t) > 0 for t in some
open interval in [0, 1]. Hence,

〈f, f〉 =

∫ 1

0

f 2(t) dt > 0.

• V = R2, and

〈(x1, x2), (y1, y2)〉 = 3x1y1 + 2x1y2 + 2x2y1 + 4x2y2.

For positive-definiteness, we have

〈(x1, x2), (x1, x2)〉 = 3x21 + 4x1x2 + 4x22.

Complete the square:

3x21 + 4x1x2 + 4x22 = 3

(
x21 +

4

3
x1x2 +

4

3
x22

)
= 3

((
x1 +

2

3
x2

)2

− 4

9
x22 +

4

3
x22

)

= 3

((
x1 +

2

3
x2

)2

+
8

9
x22

)
≥ 0,

with equality if and only if x1 = x2 = 0.

• Let F = R or C, and let V = Mm×n(F ). For A ∈Mm×n(F ), define the conjugate
transpose of A by

A∗ = At,
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where the overline means taking the conjugate of each entry of A. If A has only
real entries, the A∗ = At. Next, define the inner product,

〈A,B〉 = tr(B∗A) =
n∑
i=1

(B∗A)ii.

(Note: The special case m = 1 gives the usual inner product on Rn or Cn.)
Proof of positive-definiteness is left as an exercise.

Proposition. Let (V, 〈 , 〉) be an inner product space over F = R or C. Then for
all x, y, z ∈ V and c ∈ F ,

(a) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

(b) 〈x, cy〉 = c〈x, y〉.

(c) 〈x, 0〉 = 〈0, y〉 = 0.

(d) If 〈x, y〉 = 〈x, z〉 for all x ∈ V , then y = z.

Proof. For part (a), notice that the definition of an inner product only guarantees
sums on the left distribute. However, using properties of conjugation,

〈x, y + z〉 = 〈y + z, x〉
= 〈y, x〉+ 〈z, x〉
= 〈x, y〉+ 〈x, z〉.

Parts (b) and (c) are left as exercises. For part (d), 〈x, y〉 = 〈x, z〉 for all x implies

0 = 〈x, y〉 − 〈x, z〉 = 〈x, y〉+ (−1)〈x, z〉
= 〈x, y〉+ (−1)〈x, z〉
= 〈x, y〉+ 〈x, (−1)z〉
= 〈x, y〉+ 〈x,−z〉
= 〈x, y − z〉

for all x. In particular, let x = y − z to get 〈y − z, y − z〉 = 0. By positive-
definiteness, y − z = 0.



Week 11, Friday: Lengths, distances, components, angles

Definition. Let (V, 〈 , 〉) be an inner product space over F = R or C. The norm or
length of x ∈ V is

‖x‖ =
√
〈x, x〉 ∈ R≥0.

Two vectors x, y ∈ V are orthogonal or perpendicular if 〈x, y〉 = 0. A unit vector
is a vector of norm 1: so x ∈ V is a unit vector if ‖x‖ = 1, which is equivalent
to 〈x, x〉 = 1.

Examples of norms.

• V = Rn, 〈x, y〉 = x · y, the usual dot product. Then for x ∈ Rn,

‖x‖ =
√
x21 + · · ·+ x2n.

• V = Cn, 〈x, y〉 = x · y, the usual dot product on Cn. Then for z ∈ Cn,

‖z‖ =
√
z1z1 + · · ·+ znzn

=
√
|z1|2 + · · ·+ |zn|2.

If zj ∈ C is written as zj = xj + iyj with xj, yj ∈ R, then |zj|2 = x2j + y2j . So
then

‖z‖ =
√
x21 + y21 + · · ·+ x2n + y2n.

Thus, if we identify Cn with R2n via the isomorphism

(x1 + iy1, . . . , xn + iyn)→ (x1, y1, . . . , xn, yn),

then the isomorphism preserves norms.

Proposition. (Pythagorean theorem) Let (V, 〈 , 〉) be an inner product space over F =
R or C, and let x, y ∈ V be perpendicular. Then

‖x‖2 + ‖y‖2 = ‖x+ y‖2.
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~0 x‖x‖

‖y‖

y
x+ y

‖x
+
y‖

Proof. Since x and y are perpendicular, we have 〈x, y〉 = 0. It follows that 〈y, x〉 =
〈x, y〉 = 0, too. Therefore,

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= 〈x, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2.

Suppose we are given two vectors x, y in an inner product space. A useful geometric
operation is to break x into two parts, one of which lies along the vector y. Given
any number c, the vector cy lies along y and we can evidently write x as the sum of
two vectors: x = (x − cy) + cy). In addition, though, we would like to require, by
adjusting c, that the vector x− cy is perpendicular to y. The picture in R2 would be:

y

x

cy~0

We can calculate the required scalar c:

〈x− cy, y〉 = 0⇐⇒ 〈x, y〉 − c〈y, y〉 = 0⇐⇒ c =
〈x, y〉
〈y, y〉

⇐⇒ c =
〈x, y〉
‖y‖2

,

which makes sense as long as y 6= 0.

Definition. Let (V, 〈 , 〉) be an inner product space over F = R or C, and let x, y ∈ V
with y 6= 0. The component of x along y is the scalar

c =
〈x, y〉
〈y, y〉

=
〈x, y〉
‖y‖2

.
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The orthogonal projection of x to y is the vector cy.

Example. Let x ∈ V = Rn or Cn, and let ej be the j-th standard basis vector. Then

〈x, ej〉
〈ej, ej〉

=
xj
1

= xj.

Thus, xj is the component of x along ej, and xjej is the projection of x to ej.

Example. Let x = (3, 2) and y = (5, 0) = 5e1 in R2 with the usual inner product.
Then the component of x along y is

〈x, y〉
〈y, y〉

=
(3, 2) · (5, 0)

(5, 0), (5, 0)
=

15

25
=

3

5
.

So the projection of x to y is

cy =
3

5
(5, 0) = (3, 0),

as expected.

Proposition. Let (V, 〈 , 〉) be an inner product space over F = R or C. Let x, y ∈ V
and c ∈ F . Then

(a) ‖cx‖ = |c|‖x‖.

(b) ‖x‖ = 0 if and only if x = 0.

(c) Cauchy-Schwarz inequality: |〈x, y〉| ≤ ‖x‖‖y‖.

(d) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+‖y‖.

Proof. Parts (a) and (b) are left as exercises. Part (c) is tricky. If y = 0, we’re
done. So assume y 6= 0, and let c = 〈x, y〉/〈y, y〉 be the component of x along y.
By construction, x − cy is perpendicular to y and hence to cy. Therefore, by the
Pythagorean theorem,

‖x− cy‖2 + ‖cy‖2 = ‖(x− cy) + cy‖2 = ‖x‖2.

Since ‖x− cy‖2 ≥ 0, if we drop that term in the above equation, we get

‖cy‖2 ≤ ‖x‖2.

Take square roots to get

‖x‖ ≥ ‖cy‖ = |c|‖y‖ =

∣∣∣∣〈x, y〉‖y‖2

∣∣∣∣ ‖y‖ =
|〈x, y〉|
‖y‖

.
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Multiply through by ‖y‖ to get Cauchy-Schwarz.

For the proof of the triangle inequality, we will need two basis results concerning
complex numbers. Let z = a+ bi be any complex number. Then we have (i) z + z =
(a+ bi) + (a− bi) = 2a. So

z + z = 2 Re(z),

and (ii) |z| =
√
a2 + b2 ≥ |a|. So

Re(z) ≤ |z|.

The triangle inequality is then an easy consequence of Cauchy-Schwarz:

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2

= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2

= ‖x‖2 + 2 Re(〈x, y〉) + ‖y‖2

≤ ‖x‖2 + 2 |〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

≤ (‖x‖+ ‖y‖)2.

Take square roots to get the triangle inequality.

Distance. Let (V, 〈 , 〉) be an inner product space over R or C. The distance
between x, y ∈ V is defined to be

d(x, y) :=‖x− y‖.

The following properties then easily follow from what we have already done:

Proposition. For all x, y, z ∈ V ,

(a) Symmetry: d(x, y) = d(y, x).

(b) Positive-definiteness: d(x, y) ≥ 0, and d(x, y) = 0 iff x = y.

(c) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Angles. Now let (V, 〈 , 〉) be an inner product space over F = R. (So we will
not consider the case F = C in our discussion of angles.) We would like to define
the notion of an angle between x, y ∈ V . Our picture for the component provides
motivation:
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y

x

θ
cy~0

c = 〈x,y〉
‖y‖2

The dashed vertical line and the vector y are perpendicular (by definition of c). The
cosine of the displayed angle should be the length of the base, cy, divided by the
length of the hypotenuse, x. That quotient is

‖cy‖
‖x‖

= |c| ‖y‖
‖x‖

=
|〈x, y〉|
‖y‖2

‖y‖
‖x‖

=
|〈x, y〉|
‖x‖‖y‖

.

Omitting the absolute value on the real number 〈x, y〉 in the numerator provides the
correct signs for the different quadrants (when θ is not between 0 and 90 degrees).

Definition. Let (V, 〈 , 〉) be an inner product space over F = R, and let x, y be
nonzero elements of V . The angle θ between x and y is

θ = cos−1
(
〈x, y〉
‖x‖‖y‖

)
,

and thus,
〈x, y〉 = ‖x‖‖y‖ cos(θ).

Remarks.

• Cauchy-Schwarz says |〈x, y〉 ≤ ‖x‖‖y‖. Therefore,

−1 ≤ 〈x, y〉
‖x‖‖y‖

≤ 1.

So the inverse cosine in the definition of the angle always makes sense.

• In the definition of the angle, it might make more sense conceptually to write

cos(θ) =

〈
x

‖x‖
,
y

‖y‖

〉
.

In other words, the cosine of the angle between x and y is the inner product
of their directions where the direction of a vector w is taken to be the scalar
multiple of w with unit length, w/‖w‖.



Week 12, Monday: Gram-Schmidt

Let (V, 〈 , 〉) be an inner product space over F = R or C.

Definition. Let S ⊆ V . Then S is an orthogonal subset of V if 〈u, v〉 = 0 for
all u, v ∈ S with u 6= v. If S is an orthogonal subset of V and ‖u‖ = 1 for all u ∈ S,
then S is an orthonormal subset of V .

Examples.

• The standard basis e1, . . . , en for F n is orthonormal with respect to the standard
inner product on F n.

•
{

1√
2
(1, 1), 1√

2
(1,−1)

}
is orthonormal with respect to the standard inner product

on R2.

Proposition. Let S = {v1, . . . , vk} be an orthogonal set of nonzero vectors in V ,
and let y ∈ SpanS. Then

y =
k∑
j=1

〈y, vj〉
〈vj, vj〉

vj =
k∑
j=1

〈y, vj〉
‖vj‖2

vj.

Note that the coefficients are the components of y along each vj.

Proof. Say y =
∑k

i=1 aivi. Then for j = 1, . . . , k,

〈y, vj〉 = 〈
∑k

i=1 aivi, vj〉 =
∑k

i=1 ai〈vi, vj〉 = aj〈vj, vj〉,

since 〈vi, vj〉 = 0 for i 6= j. Hence,

aj =
〈y, vj〉
〈vj, vj〉

=
〈y, vj〉
‖vj‖2

,

the component of y along vj.

179
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Corollary 1. If S = {v1, . . . , vk} is orthonormal and y ∈ SpanS, then

y =
k∑
i=1

〈y, vj〉vi.

Corollary 2. Is S = {v1, . . . , vk} is an orthogonal set of nonzero vectors in V then S
is linearly independent.

Proof. If
∑k

i=1 aivi = 0, then for each j = 1, . . . , k,

0 = 〈0, vj〉 = 〈
∑k

i=1 aivi, vj〉 = aj〈vj, vj〉.

Since vj 6= 0 and 〈 , 〉 is positive-definite, we have 〈vj, vj〉 6= 0. Hence, aj = 0 for
j = 1, . . . , k.

Example. Consider R2 with the standard inner product, and let

u =
1√
2

(1, 1) and v =
1√
2

(1,−1).

Then β = {u, v} gives an orthonormal ordered basis for R2. What are the coordinates
of y = (4, 1) with respect to that basis?

u

v

(4, 1)

5√
2
u

3√
2
v

Answer:

y = 〈y, u〉u+ 〈y, v〉v

= (4, 1) ·
(

1√
2

(1, 1)

)
u+ (4, 1)

(
1√
2

(1,−1)

)
v
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=
5√
2
u+

3√
2
v.

Check:

5√
2

(
1√
2

(1, 1)

)
+

3√
2

(
1√
2

(1,−1)

)
=

5

2
(1, 1) +

3

2
(1,−1) = (4, 1).

Gram-Schmidt. Given vectors w1, w2 ∈ V , we’d like to compute orthogonal vec-
tors v1, v2 such that

Span {w1, w2} = Span {v1, v2} .
To do that, let v1 = w1, then “straighten out” w2 to create v2:

w1 = v1

w2

cv1~0

v2 = w2 − cv1

The number c is the component of w2 along v1. Recall, c is determined by requiring v2
and v1 to be orthogonal:

0 = 〈v2, v1〉 = 〈w2 − cv1, v1〉 = 〈w2, v2〉 − c〈v1, v1〉.

Therefore,

c =
〈w2, v1〉
〈v1, v1〉

=
〈w2, v1〉
‖v1‖2

.

(We’ve assumed v1 6= 0.)

The following algorithm generalizes this idea:

Algorithm. (Gram-Schmidt orthogonalization)

input: S = {w1, . . . , wn}, a linearly independent subset of V .

Let
v1 := w1.

For k = 2, 3, . . . , n, define vk by starting with wk, then subtracting off the components
of wk along the previously found vi :

vk := wk −
k−1∑
i=1

〈wk, vi〉
‖vi‖2

vi.
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output: S ′ = {v1, . . . , vn} an orthogonal set with SpanS ′ = SpanS.

or

output: S ′′ =

{
v1
‖v1‖

, . . . ,
vn
‖vn‖

}
an orthonormal set with SpanS ′ = SpanS.

Proof of validity of the algorithm. We prove this by induction on n. The case n = 1
is clear. Suppose the algorithm works for some n ≥ 1, and let S = {w1, . . . , wn+1} be
a linearly independent set. By induction, running the algorithm on the first n vectors
in S produces orthogonal v1, . . . , vn with

Span {v1, . . . , vn} = Span {w1, . . . , wn} .

Running the algorithm further produces

vn+1 = wn+1 −
n∑
i=1

〈wn+1, vi〉
‖vi‖2

vi.

It cannot be that vn+1 = 0, since otherwise, the above equation we would say

wn+1 ∈ Span {v1, . . . , vn} = Span {w1, . . . , wn} ,

contradicting the assumption of the linear independence of the wi. So vn+1 6= 0.

We now check that vn+1 is orthogonal to the previous vi. For j = 1, . . . , n, we have

〈vn+1, vj〉 =

〈
wn+1 −

n∑
i=1

〈wn+1, vi〉
‖vi‖2

vi, vj

〉

= 〈wn+1, vj〉 −
n∑
i=1

〈wn+1, vi〉
‖vi‖2

〈vi, vj〉

= 〈wn+1, vj〉 −
〈wn+1, vj〉
‖vj‖2

〈vj, vj〉

= 〈wn+1, vj〉 − 〈wn+1, vj〉

= 0.

We have shown {v1, . . . , vn+1} is an orthogonal set of vectors, and we would now like
to show that its span is the span of {w1, . . . , wn+1}. First, since {v1, . . . , vn+1} is
orthogonal, it’s linearly independent. Next, we have

Span {v1, . . . , vn+1} ⊆ Span {v1, . . . , vn, wn+1} ⊆ Span {w1, . . . , wn, wn+1} .
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Since Span {v1, . . . , vn+1} is an (n+1)-dimensional subspace of the (n+1)-dimensional
space Span {w1, . . . , wn, wn+1}, these spaces must be equal.

Corollary. Every nonzero finite-dimensional inner product space has an orthonormal
basis.

Example. Let V = R≤1[x], the space of polynomials of degree at most 1 with real
coefficients and with inner product

〈f, g〉 =

∫ 1

0

f(t)g(t) dt.

Apply Gram-Schmidt to the basis {1, x} to get an orthonormal basis. Note that 1
and x are not orthogonal:

〈1, x〉 =

∫ 1

0

t dt =
1

2
6= 0.

Gram-Schmidt: Start with v1 = 1, then let

v2 = x− 〈x, v1〉
‖v1‖2

v1

= x− 〈x, 1〉
‖1‖2

· 1

= x−
∫ 1

0
t dt∫ 1

0
dt
· 1

= x− 1

2
.

Check orthogonality:

〈1, x− 1/2〉 =

∫ 1

0

(t− 1/2) dt = 0.

Now scale v1 = 1 and v2 = x− 1/2 to create an orthonormal basis:

‖v1‖ =

√∫ 1

0

dt = 1

‖v2‖ =
√
〈x− 1/2, x− 1/2〉
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=

√∫ 1

0

(t− 1/2)2 dt

=

√∫ 1

0

(t2 − t+ 1/4) dt

=
√

1/12.

So an orthonormal basis for V is{
1,
√

12(x− 1/2)
}
.



Week 12, Wednesday: Orthogonal complements and projec-
tions

Definition. The direct sum of vector spaces U and W over a field F is the set

U ⊕W = {(u,w) : u ∈ U and w ∈ W}

with scalar multiplication and vector addition defined by

λ(u,w) = (λu, λw) and (u,w) + (u′, w′) = (u+ u′, w + w′),

for all u, u′ ∈ U , w,w′ ∈ W , and λ ∈ F .

Proposition. Let U and W be subspaces of a vector space V over F such that: (i)
the union of U and W spans V , and (ii) U ∩W = {0}. Then there is an isomorphism

U ⊕W → V

(u,w) 7→ u+ w.

Thus, every element of V has a unique expression of the form u + w with u ∈ U
and w ∈ W .

Proof. Easy exercise.

Remark. In the case of the Proposition, we says that V is the internal direct sum
of U and W and abuse notation by simply writing V = U ⊕W . The direct sum as
we first defined it is sometimes called the external direct sum of U and W .

For the rest of this lecture, let (V, 〈 , 〉) be an inner product space over F = R or C.

Definition. Let S ⊆ V be nonempty. The orthogonal complement of S is

S⊥ = {x ∈ V : 〈x, y〉 = 0 for all y ∈ S} .

185
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Exercise. Show that S⊥ is a subspace of V .

Example. Consider R3 with the standard inner product, and let S = {(a, b, c)}.
So S consists of the single vector (a, b, c) ∈ R3. Then

S⊥ = {(x, y, z) ∈ R3 : (x, y, z) · (a, b, c) = 0} = {(x, y, z) ∈ R3 : ax+ by + cz = 0},

a plane in R3 defined by the equation ax+ by + cz = 0.

Proposition. Suppose dimV = n and S = {v1, . . . , vk} is an orthonormal subset
of V .

(a) S can be extended to an orthonormal basis {v1, . . . , vk, vk+1, . . . , vn} for V .

(b) If W = SpanS, then S ′ = {vk+1, . . . , vn} is an orthonormal basis for W⊥.

(c) If W ⊆ V is any subspace, then

dimW + dimW⊥ = dimV = n.

(d) If W ⊆ V is any subspace, then (W⊥)⊥ = W .

Proof. (a) To prove part (a), extend S to a basis {v1, . . . , vk, wk+1, . . . , wn} for V ,
then apply Gram-Schmidt.

(b) The set S ′ = {vk+1, . . . , vn} is linearly independent since it’s a subset of a basis.
Since {v1, . . . , vn} is orthonormal, and W = Span {v1, . . . , vk}, we have S ′ ⊆ W⊥.
Therefore, SpanS ′ ⊆ W⊥. For the opposite inclusion, take x ∈ W⊥. Then since
{v1, . . . , vn} is orthonormal, we have

x =
n∑
i=1

〈x, vi〉 vi =
n∑

i=k+1

〈x, vi〉 vi ∈ SpanS ′.

(c) If W ⊆ V is any subspace, choose an orthonormal basis {v1, . . . , vk} for W . Then
apply parts (a) and (b).

(d) It’s clear that W ⊆ (W⊥)⊥ since

(W⊥)⊥ =
{
x ∈ V : 〈x, y〉 = 0 for all y ∈ W⊥} .

Then, by part (c),
dim(W⊥)⊥ = n− dimW⊥ = dimW.

Hence, W = (W⊥)⊥.
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Proposition. Let W be a finite-dimensional subspace of V . Then

V = W ⊕W⊥.

In other words, for each y ∈ V , there exist unique u ∈ W and z ∈ W⊥ such that

y = u+ z.

We define u to be the orthogonal projection of y onto W .

If u1, . . . , uk is an orthonormal basis for W , then

u =
k∑
i=1

〈y, ui〉ui.

Proof. By Gram-Schmidt, there exists an orthonormal basis u1, . . . , uk for W . Define
u =

∑k
i=1〈y, ui〉ui and z = y − u. Then u ∈ W and y = u + z. Further, z ∈ W⊥

since for each j = 1, . . . , k, we have

〈z, uj〉 = 〈y − u, uj〉
= 〈y, uj〉 − 〈

∑k
i=1〈y, ui〉ui, uj〉

= 〈y, uj〉 −
∑k

i=1〈y, ui〉 〈ui, uj〉
= 〈y, uj〉 − 〈y, uj〉 〈uj, uj〉
= 〈y, uj〉 − 〈y, uj〉
= 0.

For uniqueness, suppose there exist u′ ∈ W and z′ ∈ W⊥ such that

y = u+ z = u′ + z′.

Then u− u′ = z′ − z ∈ W ∩W⊥ = {0}. Thus, u = u′ and z = z′. (The reason W ∩
W⊥ = {0} is as follows: if x ∈ W , then we saw last time that x =

∑k
i=1〈x, ui〉ui. If

it is also the case that x ∈ W⊥, then 〈x, ui〉 = 0 for i = 1, . . . , k since each ui is in W .
Hence, x = 0.)

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

‖y − u‖ ≤ ‖y − w‖

for all w ∈ W with equality if and only if w = u.
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Proof. Write y = u + z with u ∈ W and z ∈ W⊥, and let w ∈ W . Then u− w ∈ W
and y − u ∈ W⊥. So u − w and z = y − u are perpendicular. By the Pythagorean
theorem,

‖y − w‖2 = ‖(u+ z)− w‖2

= ‖(u− w) + z‖2

= ‖(u− w)‖2 + ‖z‖2

≥ ‖z‖2

= ‖y − u‖2.

Equality occurs above if and only if ‖u− w‖2 = 0, i.e., if and only if u = w.

Example. Let V = R3 with the standard inner product, and let’s consider orthogonal
projection onto the xy-plane. An orthonormal basis for the xy-plane is {e1, e2}. The
projection of a point u = (x, y, z) ∈ R3 is given by

u = ((x, y, z) · e1)e1 + ((x, y, z) · e2)e2 = x e1 + y e2 = (x, y, 0).

The distance of (x, y, z) to the xy-plane is

‖(x, y, z)− u‖ = ‖(0, 0, z)‖ = |z|.

Application. Consider the vector space V of integrable functions f : [0, 2π] → R
with inner product

〈f, g〉 :=
1

π

∫ 2π

0

f(t)g(t) dt.

Thus, the distance between f, g ∈ V is

‖f − g‖ =

√
1

π

∫ 2π

0

(f(t)− g(t))2 dt,

which will be small if f(t) ≈ g(t) for t ∈ [0, 2π].

One may check that Sn :=
{

1√
2
, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx)

}
is an orthonormal subset. Given any integrable f ∈ V , the orthogonal projection of f
to the subspace spanned by Sn gives the best approximation of the function using
sines and cosines of frequencies j

2π
for j = 0, . . . , n. Write the projection of f to

Span(Sn) as

projSpan(Sn)(f)(x) = α · 1√
2

+
n∑
i=1

βi cos(ix) +
n∑
i=1

γi sin(ix),
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Since Sn is orthonormal, we may find the coefficients by taking inner products:

α = 〈f, 1/
√

2〉 =
1

π

∫ 2π

0

f(t)√
2
dt

βi = 〈f, cos(ix)〉 =
1

π

∫ 2π

0

f(t) cos(ix) dt

γi = 〈f, sin(ix)〉 =
1

π

∫ 2π

0

f(t) sin(ix) dt.

For instance, consider the function f(x) = x for x ∈ [0, 2π]. We find

α =
1

π

∫ 2π

0

t√
2
dt =

√
2π.

Integrating by parts, we find

βi =
1

π

∫ 2π

0

t cos(it) dt =
1

π

(
t sin(it)

i
+

cos(it)

i2

∣∣∣∣2π
0

= 0

and

γi =
1

π

∫ 2π

0

t sin(it) dt =
1

π

(
−t cos(it)

i
+

sin(it)

i2

∣∣∣∣2π
0

= −2

i
.

Thus,

projSpan(Sn)(f)(x) =
√

2π · 1√
2
−

n∑
i=1

2

iπ
sin(ix) = π − 2

π

n∑
i=1

sin(ix)

i
.

See the next page to compare the graph of f with the graphs of these projections for
various n.
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The plot of projSpan(Sn)(f) versus the plot of f(x) = x for n = 1, 2, and 10.



Week 13, Monday: Systems of linear differential equations

Suppose that
x(t) = amount of yeast at time t

and that rate of growth of yeast (at least in the time frame in which we are interested)
is proportional to the amount of yeast. So there exists a constant a such that

x′(t) = ax(t).

Integrating, we get ∫
x′(t)

x(t)
dt =

∫
a dt ⇒ ln(x(t)) = at+ b

for some constant b. Exponentiating then yields

x(t) = eatc

where c = eb. Evaluating at t = 0 shows that c is the initial condition: x(0) = c.

Now consider a two-dimensional system. Let

x1(t) = population of frogs in a pond

x2(t) = population of flies in a pond,

and suppose the rate of change of these populations satisfies the following system of
differential equations:

x′1(t) = ax1(t) + bx2(t)

x′2(t) = cx1(t) + dx2(t).

So we are assuming that the rate of growth of these populations depends linearly on
the sizes of the populations. Letting

x(t) :=

(
x1(t)
x2(t)

)
and x′(t) :=

(
x′1(t)
x′2(t)

)
,

191
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we can rewrite the system in matrix form:

x′(t) = Ax(t)

where

A =

(
a b
c d

)
.

Our problem is to find x(t). The key to solving higher-dimensional systems like this
is the following:

Theorem. Let A be an n × n matrix over the real or complex numbers. Then the
solution to x′ = Ax with initial condition x(0) = p is

x = eAtp.

(Note that p is a column vector here.)

To make sense of this, we need to be able to exponentiate a matrix! To do that, recall
that for a real or complex number a, we have

ea =
∞∑
k=0

1

k!
ak,

an infinite series that converges for all a. This formula generalizes: given any n × n
matrix A over the real or complex numbers, define

eAt :=
∞∑
k=0

1

k!
(At)k =

∞∑
k=0

1

k!
Aktk = In + At+

1

2
A2t2 +

1

6
A3t2 +

1

24
A4t4 + · · · .

Each entry of eAt is a power series in t, and that power series turns out to converge
for all t. To compute eAt though, we need to somehow compute all of the powers
of A. As you might expect, diagonalization comes to the rescue.

Computing eAt. If A is diagonalizable, then we can write

P−1AP = D = diag(λ1, . . . , λn)

where the λi are the eigenvalues of A. As we have seen earlier, it follows that

Ak = (PDP−1)k = PDkP−1 = P diag(λk1, . . . , λ
k
n)P−1.

Therefore, modulo some technicalities involving convergence, we have

eAt =
∞∑
k=0

1

k!
Aktk =

∞∑
k=0

1

k!
(PDkP−1)tk = P

(
∞∑
k=0

1

k!
Dktk

)
P−1 = PeDtP−1.
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Since D is diagonal, an easy calculation shows that

eDt = diag(eλ1t, . . . , eλnt).

So
eAt = P diag(eλ1t, . . . , eλnt)P−1.

Example. Consider the following two-dimensional system:

x′1 = x2

x′2 = x1.

In matrix form,
x′ = Ax

where

A =

(
0 1
1 0

)
.

Applying our algorithm to diagonalize A, we find

P−1AP = D = diag(1,−1)

where

P =

(
1 1
1 −1

)
.

Therefore,

eAt = PeDtP−1

=

(
1 1
1 −1

)(
et 0
0 e−t

)( 1
2

1
2

1
2
−1

2

)

=
1

2

(
et + e−t et − e−t
et − e−t et + e−t

)
.

So, for example, the solution with initial condition x(0) = (1, 0) is(
x1(t)
x2(t)

)
=

1

2

(
et + e−t et − e−t
et − e−t et + e−t

)(
1
0

)
=

1

2

(
et + e−t

et − e−t
)
,

A plot of that solution (x1(t), x2(t)) in the plane appears in blue in the picture below.
The arrows indicate the following: at each point (x1, x2) ∈ R2, we attach the velocity
vector (x′1, x

′
2) = (x2, x1).
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The solution in blue has velocity vector x′(0) = (x2(0), x1(0)) = (0, 1) at time t = 0.
To repeat: geometrically, our solution is a parametrized curve in the plane:

x : R→ R2

t 7→ x(t) = (x1(t), x2(t)).

The differential equation specifies the tangent (velocity) vectors x′(t) at each time t.
It determines a “flow” as illustrated in the picture. Specifying an initial condition
is like dropping a speck into the flow. We then get a unique solution, which is the
trajectory of that speck over time (shown in blue, above).

Note: the arrows determine new “axes” pointed in the directions of the eigenvec-
tors, (1, 1) and (1,−1).

Example. Next consider the following two-dimensional system:

x′1 = x2

x′2 = −x1.

It might approximate frog-fly populations since one would expect the frog popula-
tion x1(t) to increase with the fly population and the fly population to decrease with
the frog population. In matrix form,

x′ = Ax

where

A =

(
0 1
−1 0

)
.

The characteristic polynomial is pA(x) = x2 + 1, so A is not diagonalizable over R.
However, it is diagonalizable over C. So let’s do that to see where that goes. Applying
our algorithm to diagonalize A, we find

P−1AP = D = diag(i,−i)
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where

P =

(
i −i
1 1

)
.

eAt = PeDtP−1

=

(
i −i
1 1

)(
ei t 0

0 e−i t

)( −1
2
i 1

2

1
2
i 1

2

)

=

(
1
2
ei t + 1

2
e−i t −1

2
i ei t + 1

2
i e−i t

1
2
i ei t − 1

2
i e−i t 1

2
ei t + 1

2
e−i t

)

=

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

So starting with equal populations of frogs and flies, x(0) = (1, 1), we have

x(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)(
1
1

)
= (cos(t) + sin(t),− sin(t) + cos(t)).

Note how this system of equations is not a great model for frogs and flies: starting
at any initial population, the system evolves into one in which there are negative
amounts of frogs or flies. One could hope that it applies locally, say near times at
which the populations for frogs and flies is nearly equal. At any rate, it raises the
question as to whether any linear system of equations would make a good model.
Qualitatively, what are all of the possibilities for a two-dimensional linear system?



Week 13, Wednesday: Cross product

Let v1, . . . , vn−1 be a set of n− 1 vectors in Rn. Define the function

χ : Rn → R
x 7→ det(x, v1, . . . , vn−1).

where we think of the determinant as a function of the rows x, v1, . . . , vn−1 of a matrix,
as usual. The 1 × n matrix representing χ has the form (a1 · · · an). We define the
cross product to be the row vector

v1 × · · · × vn−1 := (a1, . . . ., an).

The mapping χ is just dot product with the cross product:

χ(x) = (a1 · · · an)

 x1
...
xn

 = (a1, . . . , an) · x = (v1 × · · · × vn−1) · x.

matrix multiplication dot product

Theorem. (Properties of the cross product.)

(a) The cross product is a multilinear alternating function of v1, . . . , vn−1.

(b) Swapping vi with vj for i 6= j changes the sign of the cross product.

(c) Adding a scalar multiple of vi to vj for some i 6= j does not change the cross
product.

(d) The cross product is orthogonal to the subspace spanned by v1, . . . , vn−1.

(e) The length of the cross product is the volume of the parallelepiped spanned
by v1, . . . , vn−1.

196
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(f) Given w ∈ Rn, the volume of the parallelepiped spanned by w and v1, . . . , vn−1
is |w · (v1 × · · · × vn−1)|.

(g) Let A be the (n− 1)× n matrix with rows v1, . . . , vn−1, and let A(j) be the (n−
1)× (n− 1) matrix formed by removing the j-th column of A. Then

v1 × · · · × vn−1 =
(
det(A(1)),− det(A(2)), det(A(3)), . . . , (−1)n−1 det(A(n))

)
.

Proof. Properties (a)–(c) follow immediately from the properties of det(x, v1, . . . , vn−1).
For property (d), note that

(v1 × · · · × vn−1) · vi = det(vi, v1, . . . , vn−1) = 0

since vi is a repeated row.

For property (e), let P be the parallelepiped spanned by v1, . . . , vn−1, and let Q be
the parallelepiped spanned by v1 × · · · × vn−1 and v1, . . . , vn−1. Since v1 × · · · × vn−1
is perpendicular to P , the volume of Q is given by the volume of the base, P , times
the height ‖v1 × · · · × vn−1‖:

vol(Q) = ‖v1 × · · · × vn−1‖ vol(P ). (36.1)

The volume of Q is the absolute value of the determinant of its spanning vectors.
Therefore,

vol(Q) = | det(v1 × · · · × vn−1, v1, . . . , vn−1)|
= |χ(v1 × · · · × vn−1, v1, . . . , vn−1)|
= (v1 × · · · × vn−1) · (v1 × · · · × vn−1)
= ‖v1 × · · · × vn−1‖2.

Combining this with equation (36.1) yields the result:

‖v1 × · · · × vn−1‖ = vol(P ).

For property (f), note that

|w · (v1 × · · · × vn−1)| = | det(w, v1, . . . , vn−1)|,

which gives the volume of the parallelepiped in question.

Property (g) follows by expanding the determinant defining χ along its first row:

χ(x) = det(x, v1, . . . , vn−1)
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= det(A(1)x1 − det(A(2))x2 + · · ·+ (−1)n−1 det(A(n))xn

= (det(A(1),− det(A(2)), . . . , (−1)n−1 det(A(n))) · (x1, . . . , xn).

�

The cross product in R3. The cross product is most well-known in the case n = 3.
Here, we have vectors x = (x1, x2, x3) and y = (y1, y2, y3). The cross product is

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) ∈ R3.

The usual mnemonic is

x× y = det

 i j k
x1 x2 x3
y1 y2 y3

 = (x2y3 − x3y2)i− (x1y3 − x3y1)j + (x1y2 − x2y1)k,

where i = e1 = (1, 0, 0), j = e2 = (0, 1, 0), and k = e3 = (0, 0, 1). We get exactly the
formula given by part (g) of the Theorem. The above is only a mnemonic since we
have not defined a determinant in the case where the entries are vectors of various
dimensions.

The cross product here is perpendicular to the parallelogram spanned by x and y,
and its length is

‖x× y‖ = ‖x‖‖y‖ sin(θ)

where θ is the angle between x and y. This last formula gives the area of the paral-
lelogram spanned by x and y:

θ

‖x‖

x

y

‖y‖ sin(θ)

Example. Find an equation for the plane through the points p = (1, 2, 3), q =
(1, 0,−2), and r = (0, 7, 2).

solution: To find a vector perpendicular to the plane, we take the cross product
of q−p and r−p. Below is a picture that illustrates the geometry (with no attempt to
get the actual coordinates correct!). The sides of the base parallelogram are spanned
by the vectors q − p and r − p.
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p

q

r(q − p)× (r − p)

Compute:

(q − p)× (r − p) = (0,−2,−5)× (−1, 5,−1)

= det

 i j k
0 −2 −5
−1 5 −1


= 27 i + 5 j− 2 k

= (27, 5,−2).

To double-check, note that the cross product is perpendicular to q − p and r − p:

(0,−2,−5) · (27, 5,−2) = 0 and (−1, 5,−1) · (27, 5,−2) = 0.

The set of all points (x, y, z) perpendicular to the cross product is the plane defined
by

(27, 5,−2) · (x, y, z) = 0,

i.e., the plane with equation
27x+ 5y − 2z = 0.

This plane passes through the origin, (0, 0, 0). We want the translation of this plane
that passes through p. (It will automatically then pass through q and r. So we could
choose either q or r for this requirement, instead.) The equation of this translated
plane will have the form

27x+ 5y − 2z = c.

for some constant c. Plug in p (or q or r) to solve for c:

c = 27(1) + 5(2)− 2(3) = 31.

So the equation of the plane is

27x+ 5y − 2z = 31.
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(Check that the equation is satisfied by p, q, and r!)

Parametric equation of the plane. As we saw earlier in the semester, we can parametrize
this plane by

f(s, t) = p+ s(q − p) + t(r − p)
= (1, 2, 3) + s(0,−2,−5) + t(−1, 5,−1)

= (1− t, 2− 2s+ 5t, 3− 5s− t).

Thus, we get the function:

f : R2 → R3

(s, t) 7→ (1− t, 2− 2s+ 5t, 3− 5s− t).

The image of f is the plane passing through p, q, and r. One may check that if we
let

x = 1− t, y = 2− 2s+ 5t, z = 3− 5s− t,

then 27x+ 5y − 2z = 31, i.e., the point satisfies the equation for the plane.



Week 13, Friday: The Spectral theorem

Theorem (Spectral theorem). Let A be an n× n symmetric matrix over R. Then A
is diagonalizable over R, and there exists an orthonormal basis for Rn (with respect
to the standard inner product) consisting of eigenvectors for A.

Example. Let

A =

 −1 −1 −2
−1 −1 2
−2 2 2

 .

The characteristic polynomial of A is

pA(t) = det

 −1− t −1 −2
−1 −1− t 2
−2 2 2− t

 = −t3 + 12t+ 16 = (4− t)(−2− t)2.

So the eigenvalues are 4,−2,−2. We next compute bases for the eigenspaces. For λ =
4,

A− 4I4 =

 −5 −1 −2
−1 −5 2
−2 2 −2

 
 1 0 1

2

0 1 −1
2

0 0 0

 .

So the eigenspace for λ = 4 is E4{(−1
2
t, 1

2
t, t) : t ∈ R}. One basis is {(−1, 1, 2)}.

Normalizing gives the basis vector

v1 =
1√
6

(−1, 1, 2).

For the eigenvalue λ = −2, we have

A+ 2I4 =

 1 −1 −2
−1 1 2
−2 2 4

 
 1 −1 −2

0 0 0
0 0 0

 ,

201
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and the eigenspace is E−2 = {(s + 2t, s, t) : s, t ∈ R}. A basis is {(1, 1, 0), (2, 0, 1)}.
Applying Gram-Schmidt to these two vectors yields an orthonormal basis for E−2
consisting of

v2 =
1√
2

(1, 1, 0), v3 =
1√
3

(1,−1, 1).

Now note that something surprising has happened: these vectors are orthogonal to v1.
We arrive at an orthonormal basis {v1, v2, v3} for R3 consisting of eigenvectors for A.
Letting P be the 3× 3 matrix whose columns are v1, v2, v3, we have

P−1AP = diag(4,−2, 2).

Since the vi form an orthonormal set, it turns out that P−1 = P t, the transpose of P :

P tP =

 −
1√
6

1√
6

2√
6

1√
2

1√
2

0
1√
3
− 1√

3
1√
3


 −

1√
6

1√
2

1√
3

1√
6

1√
2
− 1√

3
2√
6

0 1√
3

 =

 1 0 0
0 1 0
0 0 1

 .

Definition. A matrix P ∈Mn×n(R) is orthogonal if its columns form an orthonormal
set in Rn.

Lemma. P ∈Mn×n(R) is orthogonal if and only if P−1 = P t.

Proof. Note that (P tP )ij = vi · vj. So P tP = In if and only if the columns of P form
and orthonormal set.

Restatement of the spectral theorem. If A is a real n × n symmetric matrix,
then there exists a real diagonal matrix D and an orthogonal matrix P such that

A = PDP t.

Proof of the spectral theorem. We first prove that the characteristic polynomial of A
splits over R. By the Fundamental Theorem of Algebra, it splits over C. So pA(t) =∏n

k=1(λk− t) for some λk ∈ C. We must show that λk ∈ R for all k. So let λ = λk for
some k. Then there exists a nonzero v ∈ Cn such that Av = λv. Recall the standard
inner product on Cn: for y, z ∈ Cn, we have 〈y, z〉 = y · z̄. Thinking of y and z as
column vectors, we have 〈y, z〉 = z∗y where ( )∗ denotes the conjugate transpose:

〈y, z〉 = y · z̄ =
n∑
k=1

yiz̄i =
(
z̄1 · · · z̄n

) y1
...
yn

 = z∗y.
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Therefore, for an arbitrary n× n complex matrix B, we have

〈y,B∗z〉 = (B∗z)∗y = z∗(B∗)∗y = z∗By = 〈By, z〉.

Our matrix, A, is real and symmetric; so A∗ = Āt = At = A. Therefore,

〈y, Az〉 = 〈Ay, z〉.

Going back to Av = λv, we have

λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v,Av〉 = 〈v, λv〉 = λ̄〈v, v〉.

Since v 6= 0 and inner products are positive-definite, it follows that λ = λ̄, and
hence λ ∈ R.

We now prove the theorem by induction on n, the case n = 1 being trivial. Sup-
pose n > 1 and let λ1 ∈ R and v1 ∈ Rn be an eigenvalue-eigenvector pair for A.
Next, complete and apply Gram-Schmidt to construct and ordered orthonormal ba-
sis 〈v1, · · · , vn〉 for Rn. Let Q be the n×n matrix whose columns are the vi. Then Q
is orthogonal. Define

Ã := Q−1AQ = QtAQ.

Then Ã is symmetric:

Ãt =
(
QtAQ

)t
= QtAt

(
Qt
)t

= QtAtQ = QtAQ = Ã.

We would like to investigate the structure of Ã further. To find its first column, we
use the fact that Av1 = λ1v1. Let e1 be the first standard basis vector of Rn. Then
the first column of Ã is

Ãe1 = QtAQe1 = QtAv1 = Qtλ1v1 = λ1Q
tv1.

The rows of Qt are the orthonormal set v1, . . . , vn. Therefore,

(Qtv1)i = vi · v1 =

{
1 if i = 1

0 otherwise.

So the first column of Ã is the vector (λ1, 0, · · · , 0). Since Ã is symmetric, its first
column and first row are the same vector. Therefore, Ã has the form

λ1 0 · · · 0
0
... B
0
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where B is an n×n matrix. Since Ã is symmetric, so is B. So we can apply induction
to find an (n− 1)× (n− 1) orthogonal matrix T and a real diagonal matrix E such
that B = TET t. We then have

Ã =


1 0 · · · 0
0
... T
0


︸ ︷︷ ︸

S


1 0 · · · 0
0
... E
0


︸ ︷︷ ︸

D


1 0 · · · 0
0
... T t

0


︸ ︷︷ ︸

St

,

where the matrices S and T are defined as shown. Since T is orthogonal, so is S.
Finally, define P = QS. Since Q and S are orthogonal, so is P (check: (QS)t(QS) =
St(QtQ)S = StInS = In). We have

A = QÃQt = Q(SDSt)Qt = (QS)D(QS)t = PDP t,

as desired.

We now discuss a more general version of the spectral theorem.

Definition. A matrix A ∈ Mn×n(C) is Hermitian if A∗ = A (so A = Āt). A
matrix U ∈ Mn×n(C) is unitary if its columns are orthonormal, or equivalently, if U
is invertible with U−1 = U∗.

Theorem (Spectral theorem) Let A be an n×n Hermitian matrix. Then A = UDU∗

where U is unitary and D is a real diagonal matrix.



Homework assignments

Week 1, Friday

As for all Math 201 homework this semester, be sure to show your work for full credit,
and please acknowledge your collaborators and tutors.

Problem 1. Calculations. For each of the following systems of linear equations

• Find the associated augmented matrix M .

• Compute the reduced row echelon form E for M . Show your work as in
class, specifying your row operations.

• From E determine whether there are solutions to the system. If there is a
unique solution, state it. If there are infinitely many solutions, express the
set of solutions in two ways: (i) parametrically, as in examples 2.4 and 2.5 in
Chapter One, Section I.2, and (ii) in vector form as in Chapter One, Section
I.3.

(a)

x− 2y + z = 1

−4x+ 2y − z = 0

3x+ 3y − z = 1.

(b)

x+ y + 3z = 3

−x+ y + z = −1

2x+ 3y + 8z = 4.

(c)

x+ y + 3z = 3

−x+ y + z = −1

2x+ 3y + 8z = 7.

205
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(d)

2x− 2y − 3z = −2

3x− 3y − 2z + 5w = 7

x− y − 2z − w = −3.

Problem 2. Some questions about conics.

(a) Let y = px2 + qx+ r be the equation of a general parabola. By solving a system
of equations, find the constants p, q, and r so that the resulting parabola passes
through the points (−2, 15), (1, 3), and (2, 11).

(b) A (real) plane conic is a set of points of the form

C = {(x, y) ∈ R2 : ax2 + bxy + cy2 + dx+ ey + f = 0}

for some constants a, b, c, d, e, f ∈ R, not all zero. For example, the unit circle
centered at the origin is the conic specified by taking a = c = 1, b = d = e = 0,
and f = −1 to get the defining equation, x2 + y2 − 1 = 0. Note that defining
equation of a conic is only determined up to a scalar multiple: for instance,
2x2 + 2y2 − 2 = 0, the conic with a = c = 2, b = d = e = 0, and f = −2, also
determines the unit circle centered at the origin.

How many points in the plane do you think must be given to determine a specific
conic, in general? Why? (Note: You probably don’t have the tools yet to
rigorously answer this question. What are your thoughts?)
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Week 2, Tuesday

Problem 1. Let L be the line in R3 passing through the points (1, 1, 1) and (2, 7, 4).

(a) Find a system of two linear equations whose solution set is L. Show your work.
(Hint : This will likely involve solving a system of linear equations.)

(b) Give a parametrization of L (you should only need one parameter).

Problem 2. Let H be the plane in R3 containing the points (1, 1, 0), (1, 5,−3),
and (1,−2, 4).

(a) Find a linear equation whose solution set is H. Show your work.

(b) Give a parametrization of H.

(c) What happens if we instead consider the three points (1, 1, 0), (1, 5,−3) and
(1,−3, 3)? Is there such a plane? How does the process go differently for (a) and
(b)?

Problem 3. Let H be the subset of vectors (x1, . . . , xn) in Rn given by the set of
solutions to the equation

a1x1 + · · ·+ anxn = d,

for some constants a1, . . . , an, d, with at least one ai not equal to 0. Such set is called
a hyperplane.

(a) Prove that this set of solutions can be parametrized using n− 1 parameters.

(b) What do you expect the dimension of H to be? (We haven’t defined dimension
precisely, so use your intuition.)

(c) How many points do you expect need to be given to determine a hyperplane in
Rn?
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Week 2, Friday

Problem 1. Let V = R2. For the following pairs of operations, decide whether
they make V into a vector space over R. Justify your answer. In what follows, let
(x1, x2), (y1, y2) ∈ R2 and r ∈ R.

(a)
(x1, x2) + (y1, y2) = (x1 + y1, x2y2) and r · (x1, x2) = (rx1, x2).

(b)

(x1, x2) + (y1, y2) = (2x1 + 2y1, 3x2 + 3y2) and r · (x1, x2) = (rx1, rx2).

Problem 2. Here are two templates for showing a subset W of a vector space V
over a field F is a subspace:

Proof 1. First note that ~0 ∈ W since . Hence, W 6= ∅. Next, suppose
that u, v ∈ W . Then . Hence, u+v ∈ W . Now suppose r ∈ F and w ∈ W .
Then . Therefore, r · w ∈ W . �

Proof 2. First note that ~0 ∈ W since . Hence, W 6= ∅. Next, suppose
that r ∈ F and u, v ∈ W . Then . Hence, u+ r · v ∈ W . �

Use one of these two templates for each of the following exercises.

(a) Show that W = {(x, y, z) ∈ R3 | 2x− y − 3z = 0} is a subspace of R3.

(b) Show that the set W = {f : R→ R : f(t) = f(−t)} is a subspace of the vector
space of real-valued functions of one variable. (You will need to carefully use the
definitions given in Example 1.12, p. 84, of the text.)
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Week 3, Tuesday

Problem 1. In each of the following:

• Determine whether the given vector v is in the span of the set S.

• If v is in the span of S, then explicitly write v as a linear combination of the
vectors in S.

(a) V = P3(Q), v = x3 + 8x2 + 7x− 18,
S = {x3 + 3x− 2, x3 + 4x2 − x+ 2, x2 − 2x+ 3}.

(b) V = M2×2(R), v =

(
−1 3

2 4

)
,

S =

{(
1 1
1 −2

)
,

(
−1 2

1 2

)
,

(
2 4
3 5

)}
.

Definition. Let S be a subset of a vector space V . We say S generates V if
Span(S) = V .

Problem 2. Let F be a field and consider S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} ⊆ F 3.

(a) Prove that if F = Q, then S generates Q3.

(b) Prove that if F = F2, then S does not generate F3
2.

Problem 3. Let V be a vector space over a field F , and let S1 and S2 be two subsets
of V .

(a) Prove that Span(S1 ∩ S2) ⊆ Span(S1) ∩ Span(S2).

(b) Give an example in which Span(S1∩S2) and Span(S1)∩Span(S2) are equal, and
one in which they are not equal.
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Week 3, Friday

Problem 1. Determine whether the following sets are linearly dependent or linearly
independent. If they are linearly dependent, find a subset that is linearly independent
and has the same span.

(a)


1 1

0 0
0 0

 ,

0 0
1 1
0 0

 ,

0 0
0 0
1 1

 ,

1 0
1 0
1 0

 ,

0 1
0 1
0 1

 in M3×2(Q).

(b) {(1, 3, 2), (2,−1, 2), (1, 2, 4)} in R3.

(c) {(1, 1, 0), (1, 0, 1), (0, 1, 1)} in (F2)
3 (recall that F2 = Z/2Z, the field with two

elements).

Problem 2. Let V be a vector space over R. Let u and v be distinct vectors
in V . Prove that {u, v} is linearly independent if and only if {u+ v, u− v} is linearly
independent.

Bonus: Would the same be true over F2?

Problem 3.

(a) For any field F , we have defined the vector space F n of n-tuples with components
in F . List all elements of (i) F 2 and (ii) F 3 in the case that F = F2.

(b) Let S = {u1, ..., un} be a set of linearly independent vectors in a vector space
over F2. How many elements are in Span(S)? Justify your solution.
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Week 4, Friday

Problem 1. Find the coordinates of each given vector v with respect to the ordered
basis B = 〈v1, . . . , vn〉 of V . Show your work.

(a) v = (4, 1), B = 〈(1, 2), (−2, 3)〉, V = R2.

(b) v = (4, 1), B = 〈(1, 0), (0, 1)〉, V = R2.

(c) v = x2 + 2x+ 3, B = 〈1, (x− 1), (x− 1)2〉, V = P2(R).

(d) v = x2 + 2x+ 3, B = 〈1, x, x2, x3〉, V = P3(R).

Problem 2. Let X = {1, 2, 3}, and consider the vector space of functions

RX := {f : X → R} .

Recall that for f, g ∈ RX and r ∈ R, the vector space operations are defined as
follows:

(f + g)(x) = f(x) + g(x) and (rf)(x) = r(f(x)).

Also recall that in order to prove that f = g, one would show that f(i) = g(i),
for i = 1, 2, 3—that’s how one shows they are the same function.

The zero function is z ∈ RX , defined by z(1) = z(2) = z(3) = 0. It’s the additive
identity for the vector space. Also define the three characteristic functions: χ1, χ2, χ3

by

χi(j) :=

{
1 if i = j

0 if i 6= j

for i = 1, 2, 3. Thus, for instance, χ2(1) = χ2(3) = 0, and χ2(2) = 1. Define B =
{χ1, χ2, χ3}. Show that B is a basis for RX by completing the following steps.

(a) (Warm up) Let f ∈ RX be defined by f(1) = 5, f(2) = π, and f(3) = −7.
Write f as a linear combination of elements of B.

(b) Let g be an arbitrary element of RX . Show how to write g as a linear combination
of elements of B. (Thus, B spans RX .)

(c) Show that B is a linearly independent set by proving that if

aχ1 + bχ2 + cχ3 = z

for some a, b, c ∈ R, then a = b = c = 0.
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Problem 3. Let V be a vector space over F and B a basis for V . Let S ⊆ V .

(a) Prove that if B ( S, then S is linearly dependent.

(b) Prove that if S ( B, then S does not span V .

Note 1: The first statement can be read as “a basis is a maximal linearly independent
set in V ”. The second statement reads as “a basis is a minimal spanning set for V .”

Bonus (ungraded): Prove the converse of both statements. Let B be a subset
of V .

(c) Suppose that B is linearly independent and for every S with B ( S, S is linearly
dependent. Prove that B is a basis.

(d) Suppose that B spans V and for every S with S ( B, S does not span V . Prove
that B is a basis.
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Week 5, Tuesday

Problem 1. Let A be an m × n matrix with i, j-th entry Aij. The tranpose of A,
denoted AT , is the n×m matrix with i, j-th entry Aji: the i-th row of AT is the i-th
column of A. Thus, for example, a b

c d
e f

T

=

(
a c e
b d f

)
.

A matrix A is skew symmetric if AT = −A (notice the minus sign!).

Let W be the set of 3× 3 skew symmetric matrices over R.

(a) Prove that W is a subspace of the vector space of all 3× 3 matrices over R.

(b) Give a basis for W .

(c) What is dim(W )?

Problem 2. Define the following matrix over the real numbers:

M =


−14 56 40 92

6 −24 −17 −39
8 −32 −23 −53
−1 4 3 7

 .

(a) What is the reduced echelon form for M? (You do not need to show your work
for this.)

(b) Compute (i) a basis for the row space of M and (ii) a basis for the column space
of M using the algorithm presented in class on Friday of Week 4. (There is a
unique solution if you use the algorithm.)

Problem 3.

(a) Prove that there exists a linear transformation f : R2 → R3 such that f(2, 1) =
(0,−1, 3) and f(−1, 2) = (1, 0,−4). What is f(5, 10)?

(b) Is there a linear transformation f : R3 → R2 such that f(1, 2, 1) = (2, 3),
f(3, 1, 4) = (6, 2) and f(7,−1, 10) = (10, 1)? Explain your reasoning.
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Week 6, Tuesday

Problem 1. For the following functions f :

(i) prove that f is a linear transformation,

(ii) find bases for N (f) and R(f), and

(iii) compute the nullity and the rank of f .

(a) f : R3 → R2 defined by f(x, y, z) = (x− y + z, 2y + z).

(b) f : P2(R)→ P3(R) defined by f(p(x)) = x · p(x) + 2p′(x).

(Recall that Pn(F ) denotes the vector space of polynomials with coefficients in
F of degree less or equal to n. Here, p′(x) denotes the standard derivative from
calculus.)

Problem 2. Let V , W and U be finite-dimensional vector spaces over F , and let
f : V → W , g : W → U be a linear transformations. One can prove1 that g ◦ f is also
a linear transformation.

(a) Show that
rank(g ◦ f) ≤ min{rank(f), rank(g)}.

(Hint: The rank-nullity theorem is useful for part of this problem.)

(b) Give an example in which the inequality is strict.

Problem 3. Let V and W be vector spaces over F , and let f : V → W be linear an
isomorphism (bijective linear transformation). Let g : W → V be the inverse function
to f , that is, g satisfies that g ◦ f = idV and f ◦ g = idW . Prove that g is a linear
transformation.

1You don’t have to turn that in, but it is a good exercise for you to try.
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Week 6, Friday

Problem 1. Let Pn(R) be the vector space of polynomials in x of degree at most n
with coefficients in R. Define

f : P2(R)→ P3(R)

p(x) 7→
∫ x

0

p(t) dt.

Note that this is a definite integral, so there is no constant of integration! One can
show f is a linear transformation (but you don’t need to do that for this problem).

(a) Find the matrix representing f with respect to the ordered bases 〈1, x, x2〉
for P2(R) and 〈1, x, x2, x3〉 for P3(R).

(b) Find the matrix representing f with respect to the ordered bases 〈1+x+x2, x+
x2, x2〉 for P2(R) and 〈1 + x+ x2 + x3, x+ x2 + x3, x2 + x3, x3〉 for P3(R).

Problem 2. Let V be a finite-dimensional vector space over F , and let f : V → V
be a linear transformation. Prove that f is one-to-one if and only if it is onto.

Problem 3. Let P(R) be the vector space of polynomials in x with coefficients in R.
Define

f : P(R)→ P(R)

p(x) 7→
∫ x

0

p(t) dt.

and

g : P(R)→ P(R)

p(x) 7→ p′(x).

Again, one can show that f and g are linear transformations, but you don’t have to
do that here.

(a) Prove that f is one-to-one, but not onto.

(b) Prove that g is onto, but not one-to-one.

(c) What can you say about f ◦ g and g ◦ f?

Note: Contrast the situation in this problem with that in problem 2.
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Week 7, Tuesday

Problem 1. Recall that if P,Q ∈ Mm×n(F ), then their sum P + Q ∈ Mm×n(F ) is
defined to be the matrix with i, j-th entry

(P +Q)ij := Pij +Qij,

On the other hand, if P ∈ Mm×`(F ) and Q ∈ M`×n(F ) (note the change in dimen-
sions), then their product PQ ∈ Mm×n(F ) is defined to be the matrix whose i, j-th
entry is

(PQ)ij :=
∑̀
k=1

PikQkj.

Let A ∈ Mm×`(F ), and let B,C ∈ M`×n(F ). Using only the definition of matrix
addition and matrix multiplication, prove that

A(B + C) = AB + AC.

You do this by proving that the i, j-th entries on both sides are equal. Please use
summation notation, and be careful to specify the correct starting and
ending points for the summation. (The result you are proving is called the left
distributivity property of matrix multiplication.)

Problem 2. For the following, recall that just as an example usually does not
constitute a proof that something is true, a general discussion does not usually suffice
to proof that something is not true. In the latter case, it is fine (but not necessary)
to give a general discussion, but in the end, you should provide a concrete and simple
counterexample.

(a) Prove that matrix multiplication of 2× 2 matrices does not satisfy the commu-
tative law, AB = BA.

(b) Prove that matrix multiplication of 2× 2 matrices does not satisfy left cancella-
tion.
Cancellation: If AB = AC and A is not the zero matrix, then B = C.

Problem 3. Let Pn(R) be the vector space of polynomials in x of degree at most
n with coefficients in R. Let f : P2(R) → P2(R) and g : P2(R) → R3 be the linear
transformations respectively defined as

f(p(x)) = (3 + x)p′(x) + 2p(x) and g(a+ bx+ cx2) = (a+ b, c, a− b).

Let B = 〈1, x, x2〉 and D be the standard ordered basis for R3.
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(a) Compute the matrix representing f with respect to the basis B for both the
domain and codomain.

(b) Is f one-to-one? Is it onto?

(c) Compute the matrix representing g with respect to the bases B and D.

(d) Compute the matrix representing g ◦ f with respect to the bases B and D. Then
use Theorem 2.7 (Chapter Three, Section IV) to verify your result. (This theorem
says the composition of linear maps is represented by the matrix product of the
representatives of the linear maps.)
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Week 7, Friday

Problem 1. The trace of an n× n matrix A is the sum of its diagonal elements:

tr(A) =
n∑
i=1

Aii.

(a) If A and B are n×n matrices, prove that tr(AB) = tr(BA). (Use the definition
of matrix multiplication and summation notation in your proof.)

(b) If P is an invertible n× n matrix, prove that tr(PAP−1) = tr(A).

(c) Consider the following ordered basis for M2×2(F ):

α =

〈(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)〉
.

The trace defines a function tr : M2×2(F )→ F , and it is not hard to check that it is
a linear transformation of vector spaces over F (you don’t have to prove that here,
although it is a good exercise to do). Compute the matrix representing the trace
function tr : M2×2(F )→ F with respect to α for the domain and with respect to the
basis {1} for the codomain.

Problem 2. Let

A =

(
1 3
2 −1

)
, B =

(
1 0 −3
4 1 2

)
, C =

(
1 1 4
−1 −2 0

)
, D =

 2
−2
3

 .

Compute, if possible, the following. If it is not possible, explain why.

(a) AB,

(b) A(2B + 3C),

(c) (AB)D,

(d) A(BD),

(e) AD.

Problem 3. Let V be a vector space over a field F . Recall that the identity function
idV : V → V is given by idV (v) = v for all v ∈ V . This function is linear (if you are
not convinced, prove it, but you do not have to turn in that proof).



homework 219

(a) Let V be a vector space of dimension n and let B be an ordered basis for V .
Show that the matrix representing idV with respect to the basis B for both the
domain and the codomain is In (the n× n identity matrix).

(b) Let V and W be vector spaces of dimension n and let f : V → W be an isomor-
phism with inverse f−1 : W → V . Let B and D be ordered bases for V and W ,
respectively. If A is the matrix representing f with respect to the bases B and
D, what is the matrix for f−1 with respect to the bases D and B? Justify your
answer.

(c) Consider the linear transformation f : R2 → R2 given by f(x, y) = (3x+y,−x+
4y). Using part (b), find the inverse of f .
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Week 8, Tuesday

Problem 1. For each of the following matrices, use the algorithm from class to
determine whether they have inverses, and if so, find the inverse. Show your work
(i.e., the row reduction). (Pointer: as with many linear algebra problems, it’s easy
to make arithmetic mistakes, but it’s also easy to check your answer!)

(a)

 0 2 4
2 4 2
3 3 1

 (b)

 1 2 1
2 1 −1
1 5 4

 .

Problem 2. Let A and B be n× n matrices such that AB is invertible.

(a) Prove that A and B are invertible. Hint: Use rank.

(b) Give an example to show that A and B of arbitrary dimensions need not be
invertible if AB is invertible.

Problem 3. Given m in R, consider the line L in R2 given by those points (x, y)
that satisfy y = mx. (If you recall from high school, this is the line through the origin
of slope m.) Let f : R2 → R2 be the reflection of R2 about L. Geometrically, f(x, y)
is the point obtained by taking the mirror image of (x, y) across L, so that the line
segment connecting (x, y) and f(x, y) is bisected perpendicularly by L.

One can prove geometrically (but you don’t have to do that here), that f is a linear
transformation. The goal of this problem is to find a closed formula for f (without
having to use any crazy trigonometry).

(a) What are f(1,m) and f(m,−1)?

(Hint: note that (m,−1) is perpendicular to L, you don’t have to prove this for
the homework, although you might want to figure out why.)

(b) Prove that {(1,m), (m,−1)} is a basis for R2.

(c) Compute the matrix for f with respect to the ordered basis 〈(1,m), (m,−1)〉 for
the domain and the codomain. Then use the change of basis result to compute
the matrix for f with respect to the standard basis for the domain and the
codomain. Conclude by giving a closed formula for f .

(d) Explain why your result makes sense in the cases m = 0 and m = 1.
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Week 8, Friday

Problem 1. Compute the determinant of the following matrices by using row oper-
ations.

(a)

1 4 7
2 5 8
3 6 9



(b)


1 3 −1 2
2 4 7 −3
0 0 2 0
0 0 0 6



(c)


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4



(d) (BONUS) Generalize part (c) for the n× n matrix


n −1 · · · −1
−1 n · · · −1
...

...
. . .

...
−1 −1 · · · n

, with

n in the main diagonal and −1 everywhere else.

Problem 2. Let V be a vector space. For each integer r > 0, we now give a
provisional definition of a new vector space called

∧r V . A spanning set for
∧r V

consists of expressions of the form v1 ∧ · · · ∧ vr where v1, . . . , vr ∈ V . For example,
if u, v, w ∈ V , the following would be typical elements of

∧2 V :

ω = 4u ∧ v − 5u ∧ w + 7 v ∧ w
µ = 2u ∧ v + 9u ∧ w + 6 v ∧ w.

Addition is done by combining like terms, and scaling is done by scaling each term.
For instance, continuing the example above, we get

ω + µ = 6u ∧ v + 4u ∧ w + 13 v ∧ w
5ω = 20u ∧ v − 25u ∧ w + 35 v ∧ w.
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We now add a couple of rules. First, these “wedge products” of vectors are linear in
each component. For vi ∈ V and a ∈ F ,

v1 ∧ · · · ∧ vi−1 ∧ (avi + v′i) ∧ vi+1 ∧ . . . vr =

a v1 ∧ · · · ∧ vi−1 ∧ vi ∧ vi+1 ∧ · · · ∧ vr
+

v1 ∧ · · · ∧ vi−1 ∧ v′i ∧ vi+1 ∧ · · · ∧ vr.

Second, we declare that v1 ∧ · · · ∧ vr = 0 if vi = vj for some i 6= j. To illustrate these
rules in action suppose u, v, w ∈ V . Then in

∧3 V , we have the following:

u ∧ (2u+ 3v + 5w) ∧ w = u ∧ (2u) ∧ w + u ∧ (3v) ∧ w + u ∧ (5w) ∧ w
= 2u ∧ u ∧ w + 3u ∧ v ∧ w + 5u ∧ w ∧ w
= 0 + 3u ∧ v ∧ w + 0

= 3u ∧ v ∧ w.

Another example, this time in
∧2 V :

(u+ 2v) ∧ (u+ 3v) = u ∧ (u+ 3v) + (2v) ∧ (u+ 3v)

= u ∧ u+ u ∧ (3v) + (2v) ∧ u+ (2v) ∧ (3v)

= 0 + 3u ∧ v + 2 v ∧ u+ 6 v ∧ v
= 3u ∧ v + 2 v ∧ u+ 0

= 3u ∧ v + 2 v ∧ u.

It turns out there is a little more we can do to simplify this last example. By the
second rule, we have (u+ v)∧ (u+ v) = 0, since in this expression we have two copies
of the same vector. But linearly expanding this expression, we get

0 = (u+ v) ∧ (u+ v)

= u ∧ (u+ v) + v ∧ (u+ v)

= u ∧ u+ u ∧ v + v ∧ u+ v ∧ v
= 0 + u ∧ v + v ∧ u+ 0

= u ∧ v + v ∧ u.

Thus, u ∧ v + v ∧ u = 0. This means that

u ∧ v = −v ∧ u.
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In fact, in a wedge product of vectors, swapping any two locations negates the ex-
pression. (The proof is similar to the one we just gave in the case of r = 2.) For
instance,

u ∧ v ∧ w = −u ∧ w ∧ v = w ∧ u ∧ v = −w ∧ v ∧ u.

Continuing our example from above, we get

(u+ 2v) ∧ (u+ 3v) = . . . (see earlier calculation)

= 3u ∧ v + 2 v ∧ u
= 3u ∧ v − 2u ∧ v
= u ∧ v.

Now for some problems:

(a) Let V = R2, and take two vectors u = (a, b) and v = (c, d) in R2. Let e1 = (1, 0)
and e2 = (0, 1). Writing u and v as linear combinations of e1 and e2, find the
number k in terms of a, b, c, d such that

u ∧ v = k e1 ∧ e2,

in
∧2 V . What is the relation between k and det

(
a b
c d

)
?

(b) Now let V = R3, and take vectors u = (u1, u2, u3) and v = (v1, v2, v3) in R3.
Writing these vectors as linear combinations of the standard basis vectors e1 =
(1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), find numbers p, q, r in terms of the ui
and the vi such that

u ∧ v = p e2 ∧ e3 − q e1 ∧ e3 + r e1 ∧ e2.

(Watch out for the minus sign in front of q.) Physics students may note a relation
with the cross product of two vectors in R3.
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Week 9, Friday

Problem 1. Let

A =

(
1 −1 2 −2
−2 2 2 4

)
.

Find elementary matrices E1, . . . , E` such that E` · · ·E2E1A is the reduced echelon
form of A. (Check your work.)

Problem 2. This exercise will prove that the determinant is multiplicative, that is,
for n× n matrices A and B,

det(AB) = det(A) det(B).

Let B be a fixed n× n matrix over F such that det(B) 6= 0. Consider the function

d : Mn×n(F ) −→ F

defined by d(A) = det(AB)/ det(B). You will prove that d(A) = det(A). For a
matrix A, we write (r1, . . . , rn) for the rows of A, with each ri ∈ F n.

(a) Prove that d is multilinear on rows, that is, d satisfies that

d(r1, . . . , ri + k · r′i, . . . , rn) = d(r1, . . . , ri, . . . , rn) + kd(r1, . . . , r
′
i, . . . , rn)

for all r1, . . . , rn, r
′
i ∈ F n and any k ∈ F .

(Some suggested notation to help in your proof: let c1, . . . , cn be the columns
of B. Then (AB)s,t = rs · ct, i.e., the s, t-entry of AB is the dot product of the s-
th row of A with the t-th column of B. Recall that the dot product is defined
by (x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+ xnyn. Letting A′ be the matrix with
rows (r1, . . . , r

′
i, . . . , rn) and A′′ the matrix with rows (r1, . . . , ri + kr′i, . . . , rn),

you will need compare the rows of AB, A′B and A′′B.)

(b) Prove that d is alternating on rows, that is, d satisfies that d(r1, . . . , rn) = 0 if
ri = rj for some i 6= j.

(c) Prove that d(In) = 1.

(d) Deduce that for all A, we have that d(A) = det(A), and that det(AB) =
det(A) det(B).

(e) Prove that det(AB) = det(A) det(B) when det(B) = 0. (Hint: You have basi-
cally proved this in an earlier homework.)
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Week 10, Tuesday

Problem 1. Compute the determinants of the following matrices by using the
permutation expansion.

(a)

 −1 2 + i 3
1− i i 1

3i 2 −1 + i

 (b)


0 1 0 0 0
0 0 2 0 0
0 0 0 0 3
0 0 0 4 0
5 0 0 0 0



Problem 2. Compute the determinants of the same matrices as in Problem 1 by
using the Laplace expansion along any row or column. Be clear about which row or
column you are using.

Problem 3. Let p(x1, . . . , xn) be a polynomial on n variables with coefficients in
a field F . An arbitrary term of this polynomial is of the form axd11 x

d2
2 . . . xdnn , where

a ∈ F and di is a nonnegative integer for all i. The total degree of this term is
d1 + · · ·+ dn.

For example, the polynomial

p(x1, x2, x3) = 2 + x1 + 3x1x
2
2 − 4x22x

3
3 + 9x1x2x3

has five terms of total degree 0, 1, 3, 5, and 3, respectively.

Here is a result from polynomial algebra. If p satisfies the conditions:

(i) p(x1, . . . , xn) = 0 whenever xi = xj for i 6= j;

(ii) the total degree of every term is n(n− 1)/2,

then
p(x1, . . . , xn) = k(x2 − x1)(x3 − x1) · · · (xn − xn−1)

for some k ∈ F . Here the product contains all the terms of the form xj −xi with 1 ≤
i < j ≤ n. Note that the coefficient k is equal to the coefficient of x2x

2
3 · · ·xn−2n−1x

n−1
n

in p.

For example, when n = 2 and F = R, p(x1, x2) = x1 − x2 satisfies both properties,
p(x1, x2) = x21 − x22 satisfies (i) but not (ii), and p(x1, x2) = x1 + 2x2 satisfies (ii) but
not (i).
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Now consider the Vandermonde matrix

V (x1, . . . , xn) =


1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
. . .

...
xn−11 xn−12 · · · xn−1n


Let p(x1, . . . , xn) = det(V (x1, . . . , xn)).

(a) Using properties of determinants, prove that p satisfies property (i).

(b) Using the permutation expansion of the determinant, prove that p satisfies prop-
erty (ii).

(Hint: As always, it is useful to play around with small cases of n to understand
what is really going on. Try n = 2 and n = 3, and then use what you learn
to argue for the general case. When you write your solutions, you should write
them for arbitrary n.)

(c) It follows from (a) and (b) and the discussion above that

p(x1, . . . , xn) = k(x2 − x1)(x3 − x1) · · · (xn − xn−1)

for some k ∈ F . Find the value of the coefficient k.

(d) (BONUS.) A general polynomial of degree d in one variable over the real numbers
has the form

q(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d,

where the ai are real numbers. Pick n distinct real numbers x1, . . . , xn, and pick
arbitrary (not necessarily distinct) real numbers b1, . . . , bn. Prove that there is a
unique polynomial q(x) of degree n−1 over the real numbers such that q(xi) = bi
for i = 1, . . . , n.

(e) (BONUS.) Use the Vandermonde determinant to prove that the collection of
functions {eαx : α ∈ R} is linearly independent. (Recall that the set of functions
from R to R is a vector space. The solution to this problem would show that
this space is infinite dimensional.)
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Week 10, Friday

Problem 1. For each of the following matrices A ∈Mn×n(F )

(i) Determine all eigenvalues of A.

(ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ.

(iii) If possible, find a basis for F n consisting of eigenvectors of A.

(iv) If successful in finding such a basis, determine an invertible matrix P and a
diagonal matrix D such that A = PDP−1.

(a) A =

(
1 2
3 2

)
for F = R.

(b) A =

 0 −2 −3
−1 1 −1
2 2 5

 for F = R.

(c) A =

(
7 −5
10 −7

)
for F = R.

(d) A =

(
7 −5
10 −7

)
for F = C.

(e) A =

2 0 −1
4 1 −4
2 0 −1

 for F = R.

Problem 2. Let f : V → V be a linear transformation. For a positive integer m, we
define fm inductively as f ◦ fm−1. Prove that if λ is an eigenvalue for f , then λm is
an eigenvalue for fm.

Problem 3. Let T : Mn×n(R)→ Mn×n(R) defined as T (A) = At (taking the trans-
pose). One can prove that T is a linear transformation.

(a) Show that the only eigenvalues of T are 1 and -1. (Hint: Problem 2 might help.)

(b) For n = 2, describe the eigenvectors corresponding to each eigenvalue.

(c) Find an ordered basis B for M2×2(R) such that the matrix that represents T
with respect to B is diagonal.
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Week 11, Tuesday

reminder: You have a presentation proposal due next Tuesday, November 23. Please
start thinking about the topic of your presentation: an application of linear algebra
to other fields.

Problem 1. Let V = P3(R), the vector space over R consisting of all polynomials
with real coefficients having degree at most 3. Define the following linear transfor-
mation on V (in which the prime denotes differentiation),

L : V → V

f 7→ xf ′ + f ′.

(a) Write the matrix of L with respect to the ordered basis 〈1, x, x2, x3〉 of V .

(b) What are the eigenvalues of L?

(c) Does V have a basis of eigenvectors of L? If so, give such a basis (written as
polynomials not tuples of real numbers), and if not, explain why not.

Problem 2. Consider the matrix

B =

 2 1 1
0 3 2
0 0 2

 .

(a) What are the algebraic and geometric multiplicities of each of the eigenvalues
of B?

(b) Explain whether B is diagonalizable in terms of the geometric multiplicities of
its eigenvalues.

Problem 3. Consider an n × n matrix A over C. As mentioned in class, the
characteristic polynomial of A is of the form

pA(t) = det(A− tIn) = (−1)ntn + bn−1t
n−1 + · · ·+ b1t+ b0.

(a) Prove that b0 is equal to the determinant of A.

(b) Prove that bn−1 = (−1)n−1 tr(A), where tr denotes the trace.

(hint: Using the permutation expansion identify where the possible terms of
degree n− 1 arise from.)
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(c) Prove that the product of all eigenvalues of A (with multiplicity) is equal to
det(A). (You may use the fact the characteristic polynomial will factor com-
pletely into linear factors, pA(t) = (−1)n

∏n
i=1(t − λi), since we are working

over C.)

(d) Prove that the sum of all eigenvalues of A (with multiplicity) is equal to tr(A).

note: When n = 2, this result says that

pA(t) = t2 − tr(A)t+ det(A).
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Week 11, Friday

Problem 1. Consider a sequence of numbers pn defined recursively by fixing con-
stants a and b, next assigning initial values for p0 and p1, and then for n ≥ 1 letting

pn+1 = apn + bpn−1.

For instance, letting a = 2, b = −1, p0 = 0, and p1 = 1, we get

p0 = 0

p1 = 1

pn+1 = 2pn − pn−1 for n ≥ 1,

which defines the sequence
0, 1, 2, 3, 4, 5, 6, . . .

Given any sequence of this form, we can encode the recursive relation in the following
matrix equation: (

pn+1

pn

)
=

(
a b
1 0

)(
pn
pn−1

)
. (38.1)

So we have (
p2
p1

)
=

(
a b
1 0

)(
p1
p0

)
,

which implies(
p3
p2

)
=

(
a b
1 0

)(
p2
p1

)
=

(
a b
1 0

)[(
a b
1 0

)(
p1
p0

)]
=

(
a b
1 0

)2(
p1
p0

)
,

and so on. In general, we have(
pn+1

pn

)
=

(
a b
1 0

)n(
p1
p0

)
. (38.2)

Let

A =

(
a b
1 0

)
.

and suppose A is diagonalizable. Take P so that

P−1AP = D = diag(λ1, λ2).

We have seen that it follows that An = PDnP−1, so that equation (38.2) becomes(
pn+1

pn

)
= PDnP−1

(
p1
p0

)
= P

(
λn1 0
0 λn2

)
P−1

(
p1
p0

)
.
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Thus, we get a closed form expression for pn in terms of powers of the eigenvalues
of A (just take the second component of the product on the right-hand side of the
above equation).

Let a = b = 1, p0 = 0, and p1 = 1.

(a) Write out the first several values for the sequence (pn).

(b) Write the corresponding matrix equation, as (38.1) above.

(c) Diagonalize the matrix A and compute the corresponding equation for pn in
terms of powers of the eigenvalues of A.

You may find the following notation useful:

φ =
1 +
√

5

2
and φ =

1−
√

5

2
,

with useful relations φφ = −1, φ2 = φ + 1, and φ + φ = 1. (Warning: You
will want to make sure you get the diagonalization perfect. This will take some
time. Using the above notation as much as possible will help.)

(d) As in the first example above, let a = 2, b = −1, p0 = 0 and p1 = 1. What
happens when you try to use the method above to find a closed formula for pn?

Problem 2. One of the reasons we like diagonalization is because computing the
powers of the matrix is easy if it is diagonalized (see previous exercise). In this
exercise we explore the powers of Jordan blocks. Recall that a 2× 2 Jordan block is
a matrix of the form

J =

(
λ 1
0 λ

)
,

for some λ ∈ F .

(a) For J as above, compute J2, J3 and J4. For a natural number n, make a
conjecture for the value of Jn.

(b) Prove your conjecture. (Hint: You probably want to use induction.)

(c) (BONUS:) Repeat (a) and (b) above for a 3× 3 Jordan block:λ 1 0
0 λ 1
0 0 λ

 .



homework 232

Week 12, Tuesday

Problem 1. Consider the cycle graph C4:

v1 v2

v3v4

(a) Find the adjacency matrix A = A(G).

(b) Compute A4 and use it to determine the number of walks from v1 to v3 of
length 4. List all of these walks (these will be ordered lists of 5 vertices).

(c) What is the total number of closed walks of length 4?

(d) Compute and factor the characteristic polynomial for A.

(e) What are the algebraic multiplicities of each of the eigenvalues?

(f) Diagonalize A using our algorithm: compute bases for the eigenspaces of each
of the eigenvalues you just found, and use them to construct a matrix P such
that P−1AP is a diagonal matrix with the eigenvalues along the diagonal.

(g) Use part (f) to find a closed expression for A` for each ` ≥ 1.

(h) Take the trace of A` to get a formula for the number of closed walks of length `
for each ` ≥ 1. (You can check your result against the formula given in class.)

Problem 2. In this exercise we will prove the theorem from class:

“Let A be the adjacency matrix for a graph G with vertices v1, . . . , vn, and let ` ∈ Z≥0.
Then then number of walks of length ` from vi to vj is (A`)ij.”

(a) Let p(i, j, `) denote the number of walks of length ` in G from vi to vj. Prove
that for all i, j = 1, . . . , n and ` ≥ 1,

p(i, j, `) =
n∑
k=1

p(i, k, `− 1)p(k, j, 1).

(Hint: Part of the trick is to parse this formula appropriately.)

(b) Prove the theorem by induction on `, using the result from part (a).
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Week 13, Tuesday

Problem 1. Consider the inner product space (R2, 〈 , 〉) presented as an example in
class, where the inner product is defined as

〈(x1, x2), (y1, y2)〉 = 3x1y1 + 2x1y2 + 2x2y1 + 4x2y2.

(a) Compute the lengths of the vectors (1, 1) and (1,−1).

(b) Compute the cosine of the angle between (1, 1) and (1,−1). Are these vectors
perpendicular?

(c) Find a non-zero vector perpendicular to (1, 1).

Problem 2. Recall the inner product defined on Mm×n(F ), where F = R or C: for
A,B ∈Mm×n(F ), we define

〈A,B〉 = tr(B∗A),

where B∗ = Bt is the conjugate transpose. In this problem we will verify that this
function does indeed satisfy the axioms of an inner product.

(a) Prove that this function is linear in the first coordinate: for all A,B,C ∈
Mm×n(F ) and r ∈ F ,

〈A+ rC,B〉 = 〈A,B〉+ r〈C,B〉.

(b) Prove that this function is conjugate symmetric: for all A,B ∈Mm×n(F ),

〈A,B〉 = 〈B,A〉.

(c) Prove that this function is positive-definite: for all A ∈Mm×n(F ) with A 6= 0,

〈A,A〉 > 0.

Problem 3. Let (V, 〈 , 〉) be an inner product space over R, and let v, w ∈ V be
nonzero vectors.

(a) Prove that if the vector
v

‖v‖
+

w

‖w‖
is nonzero, then it bisects the angle between v and w.

(b) Illustrate in R2 with the standard dot product.
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Week 13, Friday

Problem 1. Let S = {(1, 0, i), (1, 2, 1)} in C3 (with the standard inner product).
Compute S⊥.

Problem 2. Let V = P(R) be the vector space of all polynomials with coefficients

in R, with inner product 〈f(x), g(x)〉 =
∫ 1

0
f(t)g(t) dt. Let W = P1(R). (Warning:

to get this problem right, you will need to be very careful with your calculations and
double-check your solutions.)

(a) Find an orthonormal basis {u1, u2} for W .

(b) Find the closest polynomial in W to h(x) = 3− 2x+ x2. Express your solution
in two forms: (i) as a linear combination of u1 and u2, and (ii) as a linear
combination of 1 and x.

Problem 3. Let V be an n-dimensional vector space over F = R or C, and let
〈 , 〉 be an inner product on V . Let B = {v1, . . . , vn} be an ordered basis for V (not
necessarily orthonormal). Let A be the n× n matrix given by

Aij = 〈vj, vi〉.

Recall that for x ∈ V , [x]B denotes the coordinate vector for x with respect to the
basis B, and as usual, we will think of this vector in F n as an n× 1 matrix.

(a) Prove that for all x, y ∈ V ,

〈x, y〉 = ([y]B)∗A ([x]B) .

(Recall that for a matrix C, we define C by Cij = (Cij), and then we define the
conjugate transpose by C∗ = Ct. Hint : compute both sides using sum notation.
On the right-hand side, you will be computing the (1, 1)-entry of a 1×1 matrix.)

(b) Prove that the matrix A satisfies A = A∗.

(c) If the basis B is orthonormal, what is the matrix A?

(d) (Bonus) Let D be another ordered basis for V , and let C be the associated n×n
matrix. How are A and C related?
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