Math 201

Section F03

December 1, 2021

Classroom change for Friday

We meet in Physics 240A on Friday.

Presentations

- Assignments (presentation day, practice talk, peer reviews) link at top of our class homepage

Presentations

- Assignments (presentation day, practice talk, peer reviews) link at top of our class homepage
- Beamer template (optional)

Presentations

- Assignments (presentation day, practice talk, peer reviews) link at top of our class homepage
- Beamer template (optional)
- Practice with a timer!

The cross product

$$
n-1 \text { vectors in } \mathbb{R}^{n}: \quad v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}
$$

The cross product

$n-1$ vectors in $\mathbb{R}^{n}: \quad v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}$
Define the linear function

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)
\end{aligned}
$$

The cross product

$n-1$ vectors in $\mathbb{R}^{n}: \quad v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}$
Define the linear function

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)
\end{aligned}
$$

Matrix representing χ : $\quad\left[a_{1} \cdots a_{n}\right]$.

The cross product

$n-1$ vectors in $\mathbb{R}^{n}: \quad v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}$
Define the linear function

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)
\end{aligned}
$$

Matrix representing $\chi: \quad\left[a_{1} \cdots a_{n}\right]$.
Definition. The cross product of v_{1}, \ldots, v_{n} is
$v_{1} \times \cdots \times v_{n-1}:=\left(a_{1}, \ldots, a_{n}\right)$.

The cross product

$n-1$ vectors in $\mathbb{R}^{n}: \quad v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}$
Define the linear function

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)
\end{aligned}
$$

Matrix representing $\chi: \quad\left[a_{1} \cdots a_{n}\right]$.
Definition. The cross product of v_{1}, \ldots, v_{n} is
$v_{1} \times \cdots \times v_{n-1}:=\left(a_{1}, \ldots, a_{n}\right)$.
Thus, $\chi(x)=\left(a_{1}, \ldots, a_{n}\right) \cdot x=v_{1} \times \cdots \times v_{n-1} \cdot x$, a dot product.

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

- The cross product is a multilinear alternating function of v_{1}, \ldots, v_{n-1}.

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

- The cross product is a multilinear alternating function of v_{1}, \ldots, v_{n-1}.
- Swapping v_{i} with v_{j} for $i \neq j$ changes the sign of the cross product.

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

- The cross product is a multilinear alternating function of v_{1}, \ldots, v_{n-1}.
- Swapping v_{i} with v_{j} for $i \neq j$ changes the sign of the cross product.
- Adding a scalar multiple of v_{i} to v_{j} for some $i \neq j$ does not change the cross product.

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

- The cross product is a multilinear alternating function of v_{1}, \ldots, v_{n-1}.
- Swapping v_{i} with v_{j} for $i \neq j$ changes the sign of the cross product.
- Adding a scalar multiple of v_{i} to v_{j} for some $i \neq j$ does not change the cross product.
- The cross product is orthogonal to the subspace spanned by v_{1}, \ldots, v_{n-1}.

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \\
& \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

Properties of the cross product

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

- Given $w \in \mathbb{R}^{n}$, the volume of the parallelepiped spanned by w and v_{1}, \ldots, v_{n-1} is $\left|w \cdot\left(v_{1} \times \cdots \times v_{n-1}\right)\right|$.

Properties of the cross product

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

- Given $w \in \mathbb{R}^{n}$, the volume of the parallelepiped spanned by w and v_{1}, \ldots, v_{n-1} is $\left|w \cdot\left(v_{1} \times \cdots \times v_{n-1}\right)\right|$.
- The length of the cross product is the volume of the parallelepiped spanned by v_{1}, \ldots, v_{n-1}.

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

Properties of the cross product

$$
\begin{aligned}
\chi: & \mathbb{R}^{n} \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

Let A be the $(n-1) \times(n-1)$ matrix with rows v_{1}, \ldots, v_{n-1}

Properties of the cross product

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

Let A be the $(n-1) \times(n-1)$ matrix with rows v_{1}, \ldots, v_{n-1}
Let $A^{(j)}$ be the $(n-1) \times(n-1)$ matrix formed by removing the j-th column of A.

Properties of the cross product

$$
\begin{aligned}
\chi: \mathbb{R}^{n} & \xrightarrow{v_{1} \times \cdots \times v_{n-1}} \mathbb{R} \\
& x \mapsto \operatorname{det}\left(x, v_{1}, \ldots, v_{n-1}\right)=v_{1} \times \cdots \times v_{n-1} \cdot x
\end{aligned}
$$

Let A be the $(n-1) \times(n-1)$ matrix with rows v_{1}, \ldots, v_{n-1}
Let $A^{(j)}$ be the $(n-1) \times(n-1)$ matrix formed by removing the j-th column of A.

Then
$v_{1} \times \cdots \times v_{n-1}=\left(\operatorname{det} A^{(1)},-\operatorname{det} A^{(2)}, \operatorname{det} A^{(3)}, \ldots,(-1)^{n-1} \operatorname{det} A^{(n)}\right)$.

The cross product in \mathbb{R}^{3}

$$
\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}
$$

The cross product in \mathbb{R}^{3}

$$
\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}
$$

Using the formula from the preceding page:

$$
x \times y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) \in \mathbb{R}^{3} .
$$

The cross product in \mathbb{R}^{3}

$$
\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}
$$

Using the formula from the preceding page:

$$
x \times y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) \in \mathbb{R}^{3} .
$$

Mnemonic:

$$
x \times y=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right)
$$

The cross product in \mathbb{R}^{3}

$$
\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}
$$

Using the formula from the preceding page:

$$
x \times y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) \in \mathbb{R}^{3} .
$$

Mnemonic:

$$
\begin{aligned}
x \times y & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right) \\
& =\left(x_{2} y_{3}-x_{3} y_{2}\right) \mathbf{i}-\left(x_{1} y_{3}-x_{3} y_{1}\right) \mathbf{j}+\left(x_{1} y_{2}-x_{2} y_{1}\right) \mathbf{k}
\end{aligned}
$$

where $\mathbf{i}=e_{1}, \mathbf{j}=e_{2}$, and $\mathbf{k}=e_{3}$.
\mathbb{R}^{3}

$$
x \times y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) \in \mathbb{R}^{3} .
$$

\mathbb{R}^{3}

$$
x \times y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) \in \mathbb{R}^{3} .
$$

The cross product here is perpendicular to the parallelogram spanned by x and y, and its length is

$$
\|x \times y\|=\|x\|\|y\| \sin (\theta)
$$

\mathbb{R}^{3}

Find an equation for the plane through the points $p=(1,2,3), q=(1,0,-2)$, and $r=(0,7,2)$.

\mathbb{R}^{3}

Find an equation for the plane through the points $p=(1,2,3), q=(1,0,-2)$, and $r=(0,7,2)$.

Method:

- Use cross products to find a vector (a, b, c) perpendicular to the plane.

\mathbb{R}^{3}

Find an equation for the plane through the points $p=(1,2,3), q=(1,0,-2)$, and $r=(0,7,2)$.

Method:

- Use cross products to find a vector (a, b, c) perpendicular to the plane.
- The equation

$$
a x+b y+c z=0
$$

is the plane through the origin perpendicular to (a, b, c).

\mathbb{R}^{3}

Find an equation for the plane through the points $p=(1,2,3), q=(1,0,-2)$, and $r=(0,7,2)$.

Method:

- Use cross products to find a vector (a, b, c) perpendicular to the plane.
- The equation

$$
a x+b y+c z=0
$$

is the plane through the origin perpendicular to (a, b, c).

- The plane we are looking for has the form

$$
a x+b y+c z=d
$$

for some constant d.

\mathbb{R}^{3}

Find an equation for the plane through the points $p=(1,2,3), q=(1,0,-2)$, and $r=(0,7,2)$.

Method:

- Use cross products to find a vector (a, b, c) perpendicular to the plane.
- The equation

$$
a x+b y+c z=0
$$

is the plane through the origin perpendicular to (a, b, c).

- The plane we are looking for has the form

$$
a x+b y+c z=d
$$

for some constant d. Plug in any point to find d.

