

Math 201

${\sf Section}\ {\sf F03}$

December 1, 2021

Classroom change for Friday

We meet in Physics 240A on Friday.

Presentations

 Assignments (presentation day, practice talk, peer reviews) link at top of our class homepage

Presentations

- Assignments (presentation day, practice talk, peer reviews) link at top of our class homepage
- Beamer template (optional)

Presentations

- Assignments (presentation day, practice talk, peer reviews) link at top of our class homepage
- Beamer template (optional)
- Practice with a timer!

n-1 vectors in \mathbb{R}^n : $v_1, \ldots, v_{n-1} \in \mathbb{R}^n$

n-1 vectors in \mathbb{R}^n : $v_1, \ldots, v_{n-1} \in \mathbb{R}^n$

Define the linear function

$$\chi \colon \mathbb{R}^n \to \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1})$$

n-1 vectors in \mathbb{R}^n : $v_1, \ldots, v_{n-1} \in \mathbb{R}^n$

Define the linear function

 $\chi \colon \mathbb{R}^n o \mathbb{R}$ $x \mapsto \det(x, v_1, \dots, v_{n-1})$ Matrix representing $\chi \colon [a_1 \cdots a_n].$

$$n-1$$
 vectors in \mathbb{R}^n : $v_1, \ldots, v_{n-1} \in \mathbb{R}^n$

Define the linear function

$$\chi \colon \mathbb{R}^n \to \mathbb{R}$$

 $x \mapsto \det(x, v_1, \dots, v_{n-1})$

Matrix representing χ : $[a_1 \cdots a_n]$.

Definition. The cross product of v_1, \ldots, v_n is $v_1 \times \cdots \times v_{n-1} := (a_1, \ldots, a_n)$.

$$n-1$$
 vectors in \mathbb{R}^n : $v_1, \ldots, v_{n-1} \in \mathbb{R}^n$

Define the linear function

$$\chi \colon \mathbb{R}^n \to \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1})$$

Matrix representing χ : $[a_1 \cdots a_n]$.

Definition. The cross product of v_1, \ldots, v_n is $v_1 \times \cdots \times v_{n-1} := (a_1, \ldots, a_n)$.

Thus, $\chi(x) = (a_1, \ldots, a_n) \cdot x = v_1 \times \cdots \times v_{n-1} \cdot x$, a dot product.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

The cross product is a multilinear alternating function of v₁,..., v_{n-1}.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

Swapping v_i with v_j for i ≠ j changes the sign of the cross product.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

- Swapping v_i with v_j for $i \neq j$ changes the sign of the cross product.
- Adding a scalar multiple of v_i to v_j for some $i \neq j$ does not change the cross product.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

- Swapping v_i with v_j for $i \neq j$ changes the sign of the cross product.
- Adding a scalar multiple of v_i to v_j for some $i \neq j$ does not change the cross product.
- ► The cross product is orthogonal to the subspace spanned by v₁,..., v_{n-1}.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

▶ Given $w \in \mathbb{R}^n$, the volume of the parallelepiped spanned by w and v_1, \ldots, v_{n-1} is $|w \cdot (v_1 \times \cdots \times v_{n-1})|$.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

- Given w ∈ ℝⁿ, the volume of the parallelepiped spanned by w and v₁,..., v_{n-1} is |w ⋅ (v₁ × ··· × v_{n-1})|.
- ► The length of the cross product is the volume of the parallelepiped spanned by v₁,..., v_{n-1}.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

Let A be the $(n-1) \times (n-1)$ matrix with rows v_1, \ldots, v_{n-1}

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

Let A be the $(n-1) \times (n-1)$ matrix with rows v_1, \ldots, v_{n-1} Let $A^{(j)}$ be the $(n-1) \times (n-1)$ matrix formed by removing the *j*-th column of A.

$$\chi \colon \mathbb{R}^n \xrightarrow{v_1 \times \cdots \times v_{n-1}} \mathbb{R}$$
$$x \mapsto \det(x, v_1, \dots, v_{n-1}) = v_1 \times \cdots \times v_{n-1} \cdot x$$

Let A be the $(n-1) \times (n-1)$ matrix with rows v_1, \ldots, v_{n-1} Let $A^{(j)}$ be the $(n-1) \times (n-1)$ matrix formed by removing the *j*-th column of A.

Then

$$v_1 \times \cdots \times v_{n-1} = \left(\det A^{(1)}, -\det A^{(2)}, \det A^{(3)}, \dots, (-1)^{n-1} \det A^{(n)} \right).$$

 $(x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3$

$$(x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3$$

Using the formula from the preceding page:

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \in \mathbb{R}^3.$$

$$(x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3$$

Using the formula from the preceding page:

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \in \mathbb{R}^3.$$

Mnemonic:

$$x \times y = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

$$(x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3$$

Using the formula from the preceding page:

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \in \mathbb{R}^3.$$

Mnemonic:

$$x \times y = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

= $(x_2y_3 - x_3y_2)\mathbf{i} - (x_1y_3 - x_3y_1)\mathbf{j} + (x_1y_2 - x_2y_1)\mathbf{k},$

where $\mathbf{i} = e_1, \mathbf{j} = e_2$, and $\mathbf{k} = e_3$.

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \in \mathbb{R}^3.$$

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \in \mathbb{R}^3.$$

The cross product here is perpendicular to the parallelogram spanned by x and y, and its length is

Method:

Use cross products to find a vector (a, b, c) perpendicular to the plane.

Method:

- Use cross products to find a vector (a, b, c) perpendicular to the plane.
- The equation

$$ax + by + cz = 0$$

is the plane through the origin perpendicular to (a, b, c).

Method:

- Use cross products to find a vector (a, b, c) perpendicular to the plane.
- The equation

$$ax + by + cz = 0$$

is the plane through the origin perpendicular to (a, b, c).

The plane we are looking for has the form

$$ax + by + cz = d$$

for some constant d.

Method:

- Use cross products to find a vector (a, b, c) perpendicular to the plane.
- The equation

$$ax + by + cz = 0$$

is the plane through the origin perpendicular to (a, b, c).

The plane we are looking for has the form

$$ax + by + cz = d$$

for some constant d. Plug in any point to find d.