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Systems of linear differential equations

x(t) = amount of yeast at time t

Assume the rate of growth is proportional to the amount:

x ′(t) = ax(t)

Solution:

x(t) = eatc

Initial condition:
x(0) = c



Systems of linear differential equations

x(t) = amount of yeast at time t

Assume the rate of growth is proportional to the amount:

x ′(t) = ax(t)

Solution:

x(t) = eatc

Initial condition:
x(0) = c



Systems of linear differential equations

x(t) = amount of yeast at time t

Assume the rate of growth is proportional to the amount:

x ′(t) = ax(t)

Solution:

x(t) = eatc

Initial condition:
x(0) = c



Systems of linear differential equations

x(t) = amount of yeast at time t

Assume the rate of growth is proportional to the amount:

x ′(t) = ax(t)

Solution:

x(t) = eatc

Initial condition:
x(0) = c



Two-dimensional system

x1(t) = population of frogs in a pond
x2(t) = population of flies in a pond

Suppose:

x ′1(t) = ax1(t) + bx2(t)
x ′2(t) = cx1(t) + dx2(t).

Rewrite:
x ′(t) = Ax(t)

where

x ′(t) :=
(

x ′1(t)
x ′2(t)

)
, A =

(
a b
c d

)
, x(t) :=

(
x1(t)
x2(t)

)
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Main theorem

Theorem. Let A be an n × n matrix over the real or complex
numbers. Then the solution to x ′ = Ax with initial
condition x(0) = p is

x = eAtp.

eAt :=
∞∑

k=0

1
k! (At)k =

∞∑
k=0

1
k!Aktk

= In + At + 1
2A2t2 + 1

6A3t2 + 1
24A4t4 + · · ·
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Computing eAt

If A is diagonalizable, write

P−1AP = D = diag(λ1, . . . , λn).

Then,

Ak = (PDP−1)k = PDkP−1 = P diag(λk
1 , . . . , λ

k
n)P−1.

eAt =
∞∑

k=0

1
k!Aktk =

∞∑
k=0

1
k! (PDkP−1)tk = P

( ∞∑
k=0

1
k!Dktk

)
P−1

= PeDtP−1 = P diag(eλ1t , . . . , eλnt)P−1.
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Example 2: frogs and flies

x ′1 = x2

x ′2 = −x1
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(

0 1
−1 0

)
Diagonalizable over C:

P−1AP = D = diag(i ,−i) where P =
(

i −i
1 1

)
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Example 2: frogs and flies

Starting with equal populations of frogs and flies, x(0) = (1, 1),

x(t) =
(

cos(t) sin(t)
− sin(t) cos(t)

)(
1
1

)
= (cos(t)+sin(t),− sin(t)+cos(t))
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