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Spectral theorem

Spectral theorem. Let A be an n X n symmetric matrix over R.
Then A is diagonalizable over R, and there exists an orthonormal
basis for R" (with respect to the standard inner product)
consisting of eigenvectors for A.

Let P be the matrix whose columns are these basis vectors. Then

P~AP = diag(\1, - - -, An).
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Orthogonal matrix

Definition. A matrix P € M, ,(R) is orthogonal if its columns
form an orthonormal set in R".

Lemma. P € M,y ,(R) is orthogonal if and only if P~ = P?.



Spectral theorem

Spectral theorem. If A is a real n X n symmetric matrix, then
there exists a real diagonal matrix D and an orthogonal matrix P
such that

PtAP = D,

or equivalently,
A = PDP!.



Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over R (and,
thus, the eigenvalues of A are all real).



Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over R (and,
thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic
polynomial splits over C:

n

pa(t) = [T — 1)

k=1

with A\, € C.



Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over R (and,
thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic
polynomial splits over C:

n

pa(t) = [T — 1)

k=1

with Ay € C. We must show each )\, € R.



Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over R (and,
thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic
polynomial splits over C:

n

pa(t) = [T — 1)

k=1

with Ay € C. We must show each A\ € R. Fix A = A\ for some k.
Take nonzero v € C" such that

Av = Av.



Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over R (and,
thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic
polynomial splits over C:

n

pa(t) = [T — 1)

k=1

with Ay € C. We must show each A\ € R. Fix A = A\ for some k.
Take nonzero v € C" such that

Av = Av.

miracle occurs here
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Proof of the spectral theorem

Step 2. Induct on n. The case n =1 is trivial. Assume n > 1, and
take an eigenvalue-eigenvector pair A\; € R and v; € R". Complete
to an ordered orthonormal basis for R":

(ViyeuoyVn).
Let @ be the orthogonal matrix with columns vy, ..., v,, and define
A=Q1AQ = Q'AQ.

Consider the structure of 74, and use induction.
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Proof of the spectral theorem

> A= QIAQ is symmetric.
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Proof of the spectral theorem

We have A = QtAQ = SDS* with Q and S orthogonal and D a
real diagonal matrix.

Define P = QS. Then P is orthogonal, and

A = PDP!.
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Generalization

Definition. A matrix A € Mpxn(C) is Hermitian if A* = A

(so A= AH).

A matrix U € M,»,(C) is unitary if its columns are orthonormal,
or equivalently, if U is invertible with U1 = U*.

Theorem (Spectral theorem) Let A be an n x n Hermitian matrix.
Then A = UDU* where U is unitary and D is a real diagonal
matrix.
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Applications

Statistics: least squares, singular value decomposition.

Multivariable calculus: optimization.

To find local minima and local maxima of f: R" — R, first set the
derivative of f equal to zero:
of _of
Ox1 0%,

0

to find the critical points.

Analyze these critical points: are they minima? maxima? neither?
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Optimization

Let p be a critical point. By applying a translation, we may
assume that p =0 € R".

The Taylor series for f at p has no constant or linear term. So for
X near p, we have

f(x) ~ Qx)

where Q consists of terms of degree 2.

We then analyze Q using the spectral theorem.
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Example

Fx,y) = x* =3xy +y°

% = 2x — 3y = 0 y = %X (070)
o 2 = 2 = (X7y) = or
5 = —3x+3y- = 0 x = y (%’%)

=T (o8 33 -3 S -2

Translate and forget constant term:

9
Q(X7y) = X2 —3Xy—|— 5}/2
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Linear change of coordinates: (u,v) = P(;):
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Example

Q(X,y)=X2—3Xy+9y2=(X y ) ( -

— X\ t X
Qx,y) = ( x y)A<y> =( x y)PDP<y>
Linear change of coordinates: (u,v) = P(}):

Q(u,v) = (u,v)D (5) = \u? + Aov2

A = H—T\/ﬁ >0, = % > 0= (3,3)isa (local) minimum.



