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Spectral theorem

Spectral theorem. Let A be an n × n symmetric matrix over R.

Then A is diagonalizable over R, and there exists an orthonormal
basis for Rn (with respect to the standard inner product)
consisting of eigenvectors for A.

Let P be the matrix whose columns are these basis vectors. Then

P−1AP = diag(λ1, . . . , λn).
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Orthogonal matrix
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form an orthonormal set in Rn.
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Spectral theorem

Spectral theorem. If A is a real n × n symmetric matrix, then
there exists a real diagonal matrix D and an orthogonal matrix P
such that

PtAP = D,

or equivalently,
A = PDPt .



Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over R (and,
thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic
polynomial splits over C:

pA(t) =
n∏

k=1
(λk − t)

with λk ∈ C. We must show each λk ∈ R. Fix λ = λk for some k.
Take nonzero v ∈ Cn such that

Av = λv .

miracle occurs here
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Proof of the spectral theorem

Step 2. Induct on n.

The case n = 1 is trivial. Assume n > 1, and
take an eigenvalue-eigenvector pair λ1 ∈ R and v1 ∈ Rn. Complete
to an ordered orthonormal basis for Rn:

〈v1, . . . , vn〉.

Let Q be the orthogonal matrix with columns v1, . . . , vn, and define

Ã = Q−1AQ = QtAQ.

Consider the structure of Ã, and use induction.
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Proof of the spectral theorem

I Ã = QtAQ is symmetric.

I

Ã =


λ1 0 · · · 0
0
... B
0


I By induction,

Ã =


1 0 · · · 0
0
... T
0


︸ ︷︷ ︸

S


λ1 0 · · · 0
0
... E
0


︸ ︷︷ ︸

D


1 0 · · · 0
0
... T t

0


︸ ︷︷ ︸

St
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Proof of the spectral theorem

We have Ã = QtAQ = SDSt with Q and S orthogonal and D a
real diagonal matrix.

Define P = QS. Then P is orthogonal, and

A = PDPt .

�



Proof of the spectral theorem
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Generalization

Definition. A matrix A ∈ Mn×n(C) is Hermitian if A∗ = A
(so A = Āt).

A matrix U ∈ Mn×n(C) is unitary if its columns are orthonormal,
or equivalently, if U is invertible with U−1 = U∗.

Theorem (Spectral theorem) Let A be an n × n Hermitian matrix.
Then A = UDU∗ where U is unitary and D is a real diagonal
matrix.
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Applications

Statistics: least squares, singular value decomposition.

Multivariable calculus: optimization.

To find local minima and local maxima of f : Rn → R, first set the
derivative of f equal to zero:

∂f
∂x1

= · · · = ∂f
∂xn

= 0

to find the critical points.

Analyze these critical points: are they minima? maxima? neither?
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Optimization

Let p be a critical point.

By applying a translation, we may
assume that p = 0 ∈ Rn.

The Taylor series for f at p has no constant or linear term. So for
x near p, we have

f (x) ≈ Q(x)

where Q consists of terms of degree 2.

We then analyze Q using the spectral theorem.
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Example

f (x , y) = x2 − 3xy + y3

∂f
∂x = 2x − 3y = 0
∂f
∂y = −3x + 3y2 = 0

 ⇒ y = 2
3x

x = y2

 ⇒ (x , y) =


(0, 0)

or(
9
4 ,

3
2

)
Second order Taylor approximation at p =

(
9
4 ,

3
2

)
:

f (x , y) ≈ −27
16 +

(
x − 9

4

)2
− 3

(
x − 9

4

)(
y − 3

2

)
+ 9

2

(
y − 3

2

)2

Translate and forget constant term:

Q(x , y) = x2 − 3xy + 9
2y2
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Linear change of coordinates: (u, v) = P
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)
:

Q(u, v) = (u, v) D
(

u
v

)
= λ1u2 + λ2v2.

λ1 = 11−
√

85
4 > 0, λ2 = 11+

√
85

4 > 0⇒ (9
4 ,

3
2) is a (local) minimum.



Example

Q(x , y) = x2 − 3xy + 9
2y2 =

(
x y

)( 1 −3
2

−3
2

9
2

)
︸ ︷︷ ︸

A

(
x
y

)

Q(x , y) =
(

x y
)

A
(

x
y

)
=
(

x y
)

PtDP
(

x
y

)
Linear change of coordinates: (u, v) = P

(x
y
)
:

Q(u, v) = (u, v) D
(

u
v

)
= λ1u2 + λ2v2.

λ1 = 11−
√

85
4 > 0, λ2 = 11+

√
85

4 > 0⇒ (9
4 ,

3
2) is a (local) minimum.



Example

Q(x , y) = x2 − 3xy + 9
2y2 =

(
x y

)( 1 −3
2

−3
2

9
2

)
︸ ︷︷ ︸

A

(
x
y

)

Q(x , y) =
(

x y
)

A
(

x
y

)

=
(

x y
)

PtDP
(

x
y

)
Linear change of coordinates: (u, v) = P

(x
y
)
:

Q(u, v) = (u, v) D
(

u
v

)
= λ1u2 + λ2v2.

λ1 = 11−
√

85
4 > 0, λ2 = 11+

√
85

4 > 0⇒ (9
4 ,

3
2) is a (local) minimum.



Example

Q(x , y) = x2 − 3xy + 9
2y2 =

(
x y

)( 1 −3
2

−3
2

9
2

)
︸ ︷︷ ︸

A

(
x
y

)

Q(x , y) =
(

x y
)

A
(

x
y

)
=
(

x y
)

PtDP
(

x
y

)

Linear change of coordinates: (u, v) = P
(x

y
)
:

Q(u, v) = (u, v) D
(

u
v

)
= λ1u2 + λ2v2.

λ1 = 11−
√

85
4 > 0, λ2 = 11+

√
85

4 > 0⇒ (9
4 ,

3
2) is a (local) minimum.



Example

Q(x , y) = x2 − 3xy + 9
2y2 =

(
x y

)( 1 −3
2

−3
2

9
2

)
︸ ︷︷ ︸

A

(
x
y

)

Q(x , y) =
(

x y
)

A
(

x
y

)
=
(

x y
)

PtDP
(

x
y

)
Linear change of coordinates: (u, v) = P

(x
y
)
:

Q(u, v) = (u, v) D
(

u
v

)
= λ1u2 + λ2v2.

λ1 = 11−
√

85
4 > 0, λ2 = 11+

√
85

4 > 0⇒ (9
4 ,

3
2) is a (local) minimum.



Example

Q(x , y) = x2 − 3xy + 9
2y2 =

(
x y

)( 1 −3
2

−3
2

9
2

)
︸ ︷︷ ︸

A

(
x
y

)

Q(x , y) =
(

x y
)

A
(

x
y

)
=
(

x y
)

PtDP
(

x
y

)
Linear change of coordinates: (u, v) = P

(x
y
)
:

Q(u, v) = (u, v) D
(

u
v

)
= λ1u2 + λ2v2.

λ1 = 11−
√

85
4 > 0, λ2 = 11+

√
85

4 > 0

⇒ (9
4 ,

3
2) is a (local) minimum.



Example

Q(x , y) = x2 − 3xy + 9
2y2 =

(
x y

)( 1 −3
2

−3
2

9
2

)
︸ ︷︷ ︸

A

(
x
y

)

Q(x , y) =
(

x y
)

A
(

x
y

)
=
(

x y
)

PtDP
(

x
y

)
Linear change of coordinates: (u, v) = P

(x
y
)
:

Q(u, v) = (u, v) D
(

u
v

)
= λ1u2 + λ2v2.

λ1 = 11−
√

85
4 > 0, λ2 = 11+

√
85

4 > 0⇒ (9
4 ,

3
2) is a (local) minimum.


