Math 201

Section F03

December 3, 2021

Spectral theorem

Spectral theorem. Let A be an $n \times n$ symmetric matrix over \mathbb{R}.

Spectral theorem

Spectral theorem. Let A be an $n \times n$ symmetric matrix over \mathbb{R}. Then A is diagonalizable over \mathbb{R},

Spectral theorem

Spectral theorem. Let A be an $n \times n$ symmetric matrix over \mathbb{R}. Then A is diagonalizable over \mathbb{R}, and there exists an orthonormal basis for \mathbb{R}^{n} (with respect to the standard inner product) consisting of eigenvectors for A.

Spectral theorem

Spectral theorem. Let A be an $n \times n$ symmetric matrix over \mathbb{R}. Then A is diagonalizable over \mathbb{R}, and there exists an orthonormal basis for \mathbb{R}^{n} (with respect to the standard inner product) consisting of eigenvectors for A.

Let P be the matrix whose columns are these basis vectors. Then

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Orthogonal matrix

Definition. A matrix $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if its columns form an orthonormal set in \mathbb{R}^{n}.

Orthogonal matrix

Definition. A matrix $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if its columns form an orthonormal set in \mathbb{R}^{n}.

Lemma. $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if and only if $P^{-1}=P^{t}$.

Spectral theorem

Spectral theorem. If A is a real $n \times n$ symmetric matrix, then there exists a real diagonal matrix D and an orthogonal matrix P such that

$$
P^{t} A P=D
$$

or equivalently,

$$
A=P D P^{t}
$$

Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over \mathbb{R} (and, thus, the eigenvalues of A are all real).

Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over \mathbb{R} (and, thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic polynomial splits over \mathbb{C} :

$$
p_{A}(t)=\prod_{k=1}^{n}\left(\lambda_{k}-t\right)
$$

with $\lambda_{k} \in \mathbb{C}$.

Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over \mathbb{R} (and, thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic polynomial splits over \mathbb{C} :

$$
p_{A}(t)=\prod_{k=1}^{n}\left(\lambda_{k}-t\right)
$$

with $\lambda_{k} \in \mathbb{C}$. We must show each $\lambda_{k} \in \mathbb{R}$.

Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over \mathbb{R} (and, thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic polynomial splits over \mathbb{C} :

$$
p_{A}(t)=\prod_{k=1}^{n}\left(\lambda_{k}-t\right)
$$

with $\lambda_{k} \in \mathbb{C}$. We must show each $\lambda_{k} \in \mathbb{R}$. Fix $\lambda=\lambda_{k}$ for some k. Take nonzero $v \in \mathbb{C}^{n}$ such that

$$
A v=\lambda v
$$

Proof of the spectral theorem

Step 1. The characteristic polynomial of A splits over \mathbb{R} (and, thus, the eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic polynomial splits over \mathbb{C} :

$$
p_{A}(t)=\prod_{k=1}^{n}\left(\lambda_{k}-t\right)
$$

with $\lambda_{k} \in \mathbb{C}$. We must show each $\lambda_{k} \in \mathbb{R}$. Fix $\lambda=\lambda_{k}$ for some k. Take nonzero $v \in \mathbb{C}^{n}$ such that

$$
A v=\lambda v
$$

miracle occurs here

Proof of the spectral theorem

Step 2. Induct on n.

Proof of the spectral theorem

Step 2. Induct on n. The case $n=1$ is trivial.

Proof of the spectral theorem

Step 2. Induct on n. The case $n=1$ is trivial. Assume $n>1$, and take an eigenvalue-eigenvector pair $\lambda_{1} \in \mathbb{R}$ and $v_{1} \in \mathbb{R}^{n}$.

Proof of the spectral theorem

Step 2. Induct on n. The case $n=1$ is trivial. Assume $n>1$, and take an eigenvalue-eigenvector pair $\lambda_{1} \in \mathbb{R}$ and $v_{1} \in \mathbb{R}^{n}$. Complete to an ordered orthonormal basis for \mathbb{R}^{n} :

$$
\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

Proof of the spectral theorem

Step 2. Induct on n. The case $n=1$ is trivial. Assume $n>1$, and take an eigenvalue-eigenvector pair $\lambda_{1} \in \mathbb{R}$ and $v_{1} \in \mathbb{R}^{n}$. Complete to an ordered orthonormal basis for \mathbb{R}^{n} :

$$
\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

Let Q be the orthogonal matrix with columns v_{1}, \ldots, v_{n},

Proof of the spectral theorem

Step 2. Induct on n. The case $n=1$ is trivial. Assume $n>1$, and take an eigenvalue-eigenvector pair $\lambda_{1} \in \mathbb{R}$ and $v_{1} \in \mathbb{R}^{n}$. Complete to an ordered orthonormal basis for \mathbb{R}^{n} :

$$
\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

Let Q be the orthogonal matrix with columns v_{1}, \ldots, v_{n}, and define

$$
\widetilde{A}=Q^{-1} A Q=Q^{t} A Q
$$

Proof of the spectral theorem

Step 2. Induct on n. The case $n=1$ is trivial. Assume $n>1$, and take an eigenvalue-eigenvector pair $\lambda_{1} \in \mathbb{R}$ and $v_{1} \in \mathbb{R}^{n}$. Complete to an ordered orthonormal basis for \mathbb{R}^{n} :

$$
\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

Let Q be the orthogonal matrix with columns v_{1}, \ldots, v_{n}, and define

$$
\widetilde{A}=Q^{-1} A Q=Q^{t} A Q
$$

Consider the structure of \widetilde{A}, and use induction.

Proof of the spectral theorem

- $\widetilde{A}=Q^{t} A Q$ is symmetric.

Proof of the spectral theorem

- $\widetilde{A}=Q^{t} A Q$ is symmetric.

$$
\widetilde{A}=\left(\begin{array}{c|ccc}
\lambda_{1} & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right)
$$

Proof of the spectral theorem

- $\widetilde{A}=Q^{t} A Q$ is symmetric.

$$
\widetilde{A}=\left(\begin{array}{c|ccc}
\lambda_{1} & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right)
$$

- By induction,

$$
\widetilde{A}=\underbrace{\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & T & \\
0 & & &
\end{array}\right)}_{S} \underbrace{\left(\begin{array}{c|ccc}
\lambda_{1} & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & E & \\
0 & & &
\end{array}\right)}_{D} \underbrace{\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & T^{t} & \\
0 & & &
\end{array}\right)}_{S^{t}}
$$

Proof of the spectral theorem

We have $\widetilde{A}=Q^{t} A Q=S D S^{t}$ with Q and S orthogonal and D a real diagonal matrix.

Proof of the spectral theorem

We have $\widetilde{A}=Q^{t} A Q=S D S^{t}$ with Q and S orthogonal and D a real diagonal matrix.

Define $P=Q S$.

Proof of the spectral theorem

We have $\widetilde{A}=Q^{t} A Q=S D S^{t}$ with Q and S orthogonal and D a real diagonal matrix.

Define $P=Q S$. Then P is orthogonal, and

$$
A=P D P^{t} .
$$

Generalization

Definition. A matrix $A \in M_{n \times n}(\mathbb{C})$ is Hermitian if $A^{*}=A$ (so $A=\bar{A}^{t}$).

Generalization

Definition. A matrix $A \in M_{n \times n}(\mathbb{C})$ is Hermitian if $A^{*}=A$ (so $A=\bar{A}^{t}$).

A matrix $U \in M_{n \times n}(\mathbb{C})$ is unitary if its columns are orthonormal, or equivalently, if U is invertible with $U^{-1}=U^{*}$.

Generalization

Definition. A matrix $A \in M_{n \times n}(\mathbb{C})$ is Hermitian if $A^{*}=A$ (so $A=\bar{A}^{t}$).

A matrix $U \in M_{n \times n}(\mathbb{C})$ is unitary if its columns are orthonormal, or equivalently, if U is invertible with $U^{-1}=U^{*}$.

Theorem (Spectral theorem) Let A be an $n \times n$ Hermitian matrix. Then $A=U D U^{*}$ where U is unitary and D is a real diagonal matrix.

Applications

Statistics: least squares, singular value decomposition.

Applications

Statistics: least squares, singular value decomposition.
Multivariable calculus: optimization.

Applications

Statistics: least squares, singular value decomposition.
Multivariable calculus: optimization.
To find local minima and local maxima of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, first set the derivative of f equal to zero:

Applications

Statistics: least squares, singular value decomposition.
Multivariable calculus: optimization.
To find local minima and local maxima of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, first set the derivative of f equal to zero:

$$
\frac{\partial f}{\partial x_{1}}=\cdots=\frac{\partial f}{\partial x_{n}}=0
$$

to find the critical points.

Applications

Statistics: least squares, singular value decomposition.
Multivariable calculus: optimization.
To find local minima and local maxima of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, first set the derivative of f equal to zero:

$$
\frac{\partial f}{\partial x_{1}}=\cdots=\frac{\partial f}{\partial x_{n}}=0
$$

to find the critical points.
Analyze these critical points: are they minima? maxima? neither?

Optimization

Let p be a critical point.

Optimization

Let p be a critical point. By applying a translation, we may assume that $p=0 \in \mathbb{R}^{n}$.

Optimization

Let p be a critical point. By applying a translation, we may assume that $p=0 \in \mathbb{R}^{n}$.

The Taylor series for f at p has no constant or linear term.

Optimization

Let p be a critical point. By applying a translation, we may assume that $p=0 \in \mathbb{R}^{n}$.

The Taylor series for f at p has no constant or linear term. So for x near p, we have

$$
f(x) \approx Q(x)
$$

where Q consists of terms of degree 2.

Optimization

Let p be a critical point. By applying a translation, we may assume that $p=0 \in \mathbb{R}^{n}$.

The Taylor series for f at p has no constant or linear term. So for x near p, we have

$$
f(x) \approx Q(x)
$$

where Q consists of terms of degree 2 .
We then analyze Q using the spectral theorem.

Example

$$
f(x, y)=x^{2}-3 x y+y^{3}
$$

Example

$$
\begin{aligned}
& f(x, y)=x^{2}-3 x y+y^{3} \\
& \left.\begin{array}{l}
\frac{\partial f}{\partial x}=2 x-3 y=0 \\
\frac{\partial f}{\partial y}=-3 x+3 y^{2}=0
\end{array}\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x, y)=x^{2}-3 x y+y^{3} \\
& \left.\left.\begin{array}{l}
\frac{\partial f}{\partial x}=2 x-3 y=0 \\
\frac{\partial f}{\partial y}=-3 x+3 y^{2}=0
\end{array}\right\} \Rightarrow \begin{array}{l}
y=\frac{2}{3} x \\
x=y^{2}
\end{array}\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x, y)=x^{2}-3 x y+y^{3} \\
& \left.\left.\begin{array}{l}
\frac{\partial f}{\partial x}=2 x-3 y=0 \\
\frac{\partial f}{\partial y}=-3 x+3 y^{2}=
\end{array}\right\} \Rightarrow \begin{array}{l}
y=\frac{2}{3} x \\
x=y^{2}
\end{array}\right\} \Rightarrow(x, y)=\left\{\begin{array}{c}
(0,0) \\
\text { or } \\
\left(\frac{9}{4}, \frac{3}{2}\right)
\end{array}\right.
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x, y)=x^{2}-3 x y+y^{3} \\
& \left.\left.\begin{array}{c}
\frac{\partial f}{\partial x}=2 x-3 y=0 \\
\frac{\partial f}{\partial y}=-3 x+3 y^{2}=
\end{array}\right\} \Rightarrow \Rightarrow \begin{array}{l}
y=\frac{2}{3} x \\
x=y^{2}
\end{array}\right\} \Rightarrow(x, y)=\left\{\begin{array}{c}
(0,0) \\
\text { or } \\
\left(\frac{9}{4}, \frac{3}{2}\right)
\end{array}\right.
\end{aligned}
$$

Second order Taylor approximation at $p=\left(\frac{9}{4}, \frac{3}{2}\right)$:

$$
f(x, y) \approx-\frac{27}{16}+\left(x-\frac{9}{4}\right)^{2}-3\left(x-\frac{9}{4}\right)\left(y-\frac{3}{2}\right)+\frac{9}{2}\left(y-\frac{3}{2}\right)^{2}
$$

Example

$$
\begin{aligned}
& f(x, y)=x^{2}-3 x y+y^{3} \\
& \left.\left.\begin{array}{c}
\frac{\partial f}{\partial x}=2 x-3 y=0 \\
\frac{\partial f}{\partial y}=-3 x+3 y^{2}=0
\end{array}\right\} \Rightarrow \begin{array}{l}
y=\frac{2}{3} x \\
x=y^{2}
\end{array}\right\} \Rightarrow(x, y)=\left\{\begin{array}{c}
(0,0) \\
\text { or } \\
\left(\frac{9}{4}, \frac{3}{2}\right)
\end{array}\right.
\end{aligned}
$$

Second order Taylor approximation at $p=\left(\frac{9}{4}, \frac{3}{2}\right)$:

$$
f(x, y) \approx-\frac{27}{16}+\left(x-\frac{9}{4}\right)^{2}-3\left(x-\frac{9}{4}\right)\left(y-\frac{3}{2}\right)+\frac{9}{2}\left(y-\frac{3}{2}\right)^{2}
$$

Translate and forget constant term:

$$
Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}
$$

Example

$$
Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}
$$

Example

$$
Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right) \underbrace{\left(\begin{array}{rr}
1 & -\frac{3}{2} \\
-\frac{3}{2} & \frac{9}{2}
\end{array}\right)}_{A}\binom{x}{y}
$$

Example

$$
\begin{aligned}
& Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right) \underbrace{\left(\begin{array}{rr}
1 & -\frac{3}{2} \\
-\frac{3}{2} & \frac{9}{2}
\end{array}\right)}_{A}\binom{x}{y} \\
& Q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y}
\end{aligned}
$$

Example

$$
\begin{gathered}
Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right) \underbrace{\left(\begin{array}{rr}
1 & -\frac{3}{2} \\
-\frac{3}{2} & \frac{9}{2}
\end{array}\right)}_{A}\binom{x}{y} \\
Q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y}=\left(\begin{array}{ll}
x & y
\end{array}\right) P^{t} D P\binom{x}{y}
\end{gathered}
$$

Example

$$
\begin{gathered}
Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right) \underbrace{\left(\begin{array}{rr}
1 & -\frac{3}{2} \\
-\frac{3}{2} & \frac{9}{2}
\end{array}\right)}_{A}\binom{x}{y} \\
Q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y}=\left(\begin{array}{ll}
x & y
\end{array}\right) P^{t} D P\binom{x}{y}
\end{gathered}
$$

Linear change of coordinates: $(u, v)=P\binom{x}{y}$:

$$
Q(u, v)=(u, v) D\binom{u}{v}=\lambda_{1} u^{2}+\lambda_{2} v^{2}
$$

Example

$$
\begin{gathered}
Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right) \underbrace{\left(\begin{array}{rr}
1 & -\frac{3}{2} \\
-\frac{3}{2} & \frac{9}{2}
\end{array}\right)}_{A}\binom{x}{y} \\
Q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y}=\left(\begin{array}{ll}
x & y
\end{array}\right) P^{t} D P\binom{x}{y}
\end{gathered}
$$

Linear change of coordinates: $(u, v)=P\binom{x}{y}$:

$$
Q(u, v)=(u, v) D\binom{u}{v}=\lambda_{1} u^{2}+\lambda_{2} v^{2}
$$

$$
\lambda_{1}=\frac{11-\sqrt{85}}{4}>0, \lambda_{2}=\frac{11+\sqrt{85}}{4}>0
$$

Example

$$
\begin{gathered}
Q(x, y)=x^{2}-3 x y+\frac{9}{2} y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right) \underbrace{\left(\begin{array}{rr}
1 & -\frac{3}{2} \\
-\frac{3}{2} & \frac{9}{2}
\end{array}\right)}_{A}\binom{x}{y} \\
Q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y}=\left(\begin{array}{ll}
x & y
\end{array}\right) P^{t} D P\binom{x}{y}
\end{gathered}
$$

Linear change of coordinates: $(u, v)=P\binom{x}{y}$:

$$
Q(u, v)=(u, v) D\binom{u}{v}=\lambda_{1} u^{2}+\lambda_{2} v^{2}
$$

$$
\lambda_{1}=\frac{11-\sqrt{85}}{4}>0, \lambda_{2}=\frac{11+\sqrt{85}}{4}>0 \Rightarrow\left(\frac{9}{4}, \frac{3}{2}\right) \text { is a (local) minimum. }
$$

