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Direct sums

Definition. The direct sum of vector spaces U and W over a
field F

is the set

U ⊕W = {(u,w) : u ∈ U and w ∈W }

with scalar multiplication and vector addition defined by

λ(u,w) = (λu, λw) and (u,w) + (u′,w ′) = (u + u′,w + w ′),

for all u, u′ ∈ U, w ,w ′ ∈W , and λ ∈ F .
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Direct sums

Proposition. Let U and W be subspaces of a vector space V
over F

such that:
I the union of U and W spans V ,
I U ∩W = {0}.

Then there is an isomorphism

U ⊕W → V
(u,w) 7→ u + w .

Thus, every element of V has a unique expression of the
form u + w with u ∈ U and w ∈W .

(internal versus external direct sum)
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Review

Recall from last time:

If S = {v1, . . . , vk} ⊂ V is orthonormal and y ∈ Span S, then

y =
k∑

i=1
〈y , vj〉vi .



Orthogonal complement

Let (V , 〈 , 〉) be an inner product space over F = R or C.

Definition. Let S ⊆ V be nonempty. The orthogonal complement
of S is

S⊥ = {x ∈ V : 〈x , y〉 = 0 for all y ∈ S} .

I S⊥ is a subspace of V
I Hyperplane example
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Main results

Proposition. Let W be a finite-dimensional subspace of V . Then

V = W ⊕W ⊥.

Thus, for each y ∈ V , there exist unique u ∈W and z ∈W ⊥ such
that

y = u + z .

The vector u ∈W is the orthogonal projection of y onto W . It is
the unique closest vector to y that is in W .

Proposition. If V is finite-dimensional, then

dim V = dim W + dim W ⊥.
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Orthogonal projection

Proposition. Suppose dim V = n and S = {v1, . . . , vk} is an
orthonormal subset of V .

(a) S can be extended to an orthonormal basis
{v1, . . . , vk , vk+1, . . . , vn} for V .

(b) If W = Span S, then S ′ = {vk+1, . . . , vn} is an orthonormal
basis for W ⊥.

(c) If W ⊆ V is any subspace, then

dim W + dim W ⊥ = dim V = n.

(d) If W ⊆ V is any subspace, then (W ⊥)⊥ = W .
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Orthogonal projection

Proposition. Let W be a finite-dimensional subspace of V . Then

V = W ⊕W ⊥.

Thus, for each y ∈ V , there exist unique u ∈W and z ∈W ⊥ such
that

y = u + z .

We define u to be the orthogonal projection of y onto W .

If u1, . . . , uk is an orthonormal basis for W , then

u =
k∑

i=1
〈y , ui〉 ui .
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Orthogonal projection

Corollary. The orthogonal projection u of y onto W is the closest
vector in W to y :

‖y − u‖ ≤ ‖y − w‖

for all w ∈W with equality if and only if w = u.

Proof. Write y = u + z with u ∈W and z ∈W ⊥, and
let w ∈W .

Then u − w ∈W and y − u ∈W ⊥.

So u − w and z = y − u are perpendicular.

The result now follows from the Pythagorean theorem:

‖y − w‖2 = · · ·
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Application

Let V be the vector space of integrable functions [0, 2π]→ R

with
inner product

〈f , g〉 := 1
π

∫ 2π

0
f (t)g(t) dt.

The distance between f , g ∈ V is

‖f − g‖ := 1
π

∫ 2π

0
(f (t)− g(t))2 dt.

An orthonormal set;

Sn :=
{ 1√

2
, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx)

}
.

Problem: Approximate f ∈ V with an element in Span(Sn).
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