

Math 201

${\sf Section}\ {\sf F03}$

November 24, 2021

Definition. The *direct sum* of vector spaces U and W over a field F

Definition. The *direct sum* of vector spaces U and W over a field F is the set

$$U \oplus W = \{(u, w) : u \in U \text{ and } w \in W\}$$

Definition. The *direct sum* of vector spaces U and W over a field F is the set

$$U \oplus W = \{(u, w) : u \in U \text{ and } w \in W\}$$

with scalar multiplication and vector addition defined by

$$\lambda(u,w) = (\lambda u, \lambda w)$$

Definition. The *direct sum* of vector spaces U and W over a field F is the set

$$U \oplus W = \{(u, w) : u \in U \text{ and } w \in W\}$$

with scalar multiplication and vector addition defined by

$$\lambda(u,w) = (\lambda u,\lambda w)$$
 and $(u,w) + (u',w') = (u+u',w+w'),$

for all $u, u' \in U$, $w, w' \in W$, and $\lambda \in F$.

Proposition. Let U and W be subspaces of a vector space V over F

Proposition. Let U and W be subspaces of a vector space V over F such that:

 \blacktriangleright the union of U and W spans V,

Proposition. Let U and W be subspaces of a vector space V over F such that:

• the union of U and W spans V,

$$\blacktriangleright U \cap W = \{0\}.$$

Proposition. Let U and W be subspaces of a vector space V over F such that:

• the union of U and W spans V,

$$\blacktriangleright U \cap W = \{0\}.$$

Then there is an isomorphism

$$U \oplus W \to V$$
$$(u, w) \mapsto u + w.$$

Proposition. Let U and W be subspaces of a vector space V over F such that:

• the union of U and W spans V,

$$\blacktriangleright U \cap W = \{0\}.$$

Then there is an isomorphism

$$U \oplus W \to V$$
$$(u, w) \mapsto u + w.$$

Thus, every element of V has a unique expression of the form u + w with $u \in U$ and $w \in W$.

Proposition. Let U and W be subspaces of a vector space V over F such that:

▶ the union of U and W spans V,

$$\blacktriangleright U \cap W = \{0\}.$$

Then there is an isomorphism

$$U \oplus W \to V$$
$$(u, w) \mapsto u + w.$$

Thus, every element of V has a unique expression of the form u + w with $u \in U$ and $w \in W$.

(*internal* versus *external* direct sum)

Recall from last time:

If $S = \{v_1, \ldots, v_k\} \subset V$ is orthonormal and $y \in \operatorname{Span} S$, then

$$y=\sum_{i=1}^k \langle y,v_j\rangle v_i.$$

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

Definition. Let $S \subseteq V$ be nonempty. The *orthogonal complement* of *S* is

$$S^{\perp} = \{x \in V : \langle x, y
angle = 0 ext{ for all } y \in S\}.$$

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

Definition. Let $S \subseteq V$ be nonempty. The *orthogonal complement* of *S* is

$$S^{\perp} = \{x \in V : \langle x, y \rangle = 0 \text{ for all } y \in S\}.$$

• S^{\perp} is a subspace of V

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

Definition. Let $S \subseteq V$ be nonempty. The *orthogonal complement* of *S* is

$$S^{\perp} = \left\{ x \in V : \langle x, y
angle = 0 ext{ for all } y \in S
ight\}.$$

- S^{\perp} is a subspace of V
- Hyperplane example

Proposition. Let W be a finite-dimensional subspace of V. Then

 $V = W \oplus W^{\perp}.$

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$y = u + z$$
.

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$y = u + z$$
.

The vector $u \in W$ is the *orthogonal projection* of y onto W.

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$y = u + z$$
.

The vector $u \in W$ is the *orthogonal projection* of y onto W. It is the unique closest vector to y that is in W.

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$y = u + z$$
.

The vector $u \in W$ is the *orthogonal projection* of y onto W. It is the unique closest vector to y that is in W.

Proposition. If V is finite-dimensional, then

dim $V = \dim W + \dim W^{\perp}$.

Proposition. Suppose dim V = n and $S = \{v_1, \ldots, v_k\}$ is an orthonormal subset of V.

Proposition. Suppose dim V = n and $S = \{v_1, \ldots, v_k\}$ is an orthonormal subset of V.

(a) S can be extended to an orthonormal basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.

Proposition. Suppose dim V = n and $S = \{v_1, \ldots, v_k\}$ is an orthonormal subset of V.

- (a) S can be extended to an orthonormal basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.
- (b) If W = Span S, then $S' = \{v_{k+1}, \dots, v_n\}$ is an orthonormal basis for W^{\perp} .

Proposition. Suppose dim V = n and $S = \{v_1, \ldots, v_k\}$ is an orthonormal subset of V.

- (a) S can be extended to an orthonormal basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.
- (b) If W = Span S, then $S' = \{v_{k+1}, \dots, v_n\}$ is an orthonormal basis for W^{\perp} .

(c) If $W \subseteq V$ is any subspace, then

 $\dim W + \dim W^{\perp} = \dim V = n.$

Proposition. Suppose dim V = n and $S = \{v_1, \ldots, v_k\}$ is an orthonormal subset of V.

- (a) S can be extended to an orthonormal basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.
- (b) If W = Span S, then $S' = \{v_{k+1}, \dots, v_n\}$ is an orthonormal basis for W^{\perp} .

(c) If $W \subseteq V$ is any subspace, then

$$\dim W + \dim W^{\perp} = \dim V = n.$$

(d) If $W \subseteq V$ is any subspace, then $(W^{\perp})^{\perp} = W$.

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$y = u + z$$
.

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$y = u + z$$
.

We define u to be the *orthogonal projection* of y onto W.

Proposition. Let W be a finite-dimensional subspace of V. Then

$$V = W \oplus W^{\perp}.$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$y = u + z$$
.

We define u to be the *orthogonal projection* of y onto W.

If u_1, \ldots, u_k is an orthonormal basis for W, then

$$u=\sum_{i=1}^k \langle y,u_i\rangle u_i.$$

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

$$\|y-u\|\leq \|y-w\|$$

for all $w \in W$ with equality if and only if w = u.

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

$$\|y-u\|\leq \|y-w\|$$

for all $w \in W$ with equality if and only if w = u.

Proof.

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

$$\|y-u\|\leq \|y-w\|$$

for all $w \in W$ with equality if and only if w = u.

Proof. Write y = u + z with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$.

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

$$\|y-u\|\leq \|y-w\|$$

for all $w \in W$ with equality if and only if w = u.

Proof. Write y = u + z with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$.

Then $u - w \in W$ and $y - u \in W^{\perp}$.

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

$$\|y-u\|\leq \|y-w\|$$

for all $w \in W$ with equality if and only if w = u.

Proof. Write y = u + z with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$.

Then $u - w \in W$ and $y - u \in W^{\perp}$.

So u - w and z = y - u are perpendicular.

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

$$\|y-u\|\leq \|y-w\|$$

for all $w \in W$ with equality if and only if w = u.

Proof. Write y = u + z with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$.

Then $u - w \in W$ and $y - u \in W^{\perp}$.

So u - w and z = y - u are perpendicular.

The result now follows from the Pythagorean theorem:

$$\|y-w\|^2=\cdots$$

Let V be the vector space of integrable functions $[0,2\pi] o \mathbb{R}$

Let V be the vector space of integrable functions $[0,2\pi] \to \mathbb{R}$ with inner product

$$\langle f,g
angle := rac{1}{\pi}\int_0^{2\pi}f(t)g(t)\,dt.$$

Let V be the vector space of integrable functions $[0,2\pi] \to \mathbb{R}$ with inner product

$$\langle f,g\rangle := rac{1}{\pi}\int_0^{2\pi}f(t)g(t)\,dt.$$

The distance between $f,g \in V$ is

$$\|f-g\|:=rac{1}{\pi}\int_0^{2\pi}(f(t)-g(t))^2\,dt.$$

Let V be the vector space of integrable functions $[0,2\pi] \to \mathbb{R}$ with inner product

$$\langle f,g\rangle := rac{1}{\pi}\int_0^{2\pi}f(t)g(t)\,dt.$$

The distance between $f,g \in V$ is

$$\|f-g\| := \frac{1}{\pi} \int_0^{2\pi} (f(t) - g(t))^2 dt.$$

An orthonormal set;

$$S_n := \left\{\frac{1}{\sqrt{2}}, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx)\right\}.$$

Let V be the vector space of integrable functions $[0,2\pi] \to \mathbb{R}$ with inner product

$$\langle f,g\rangle := rac{1}{\pi}\int_0^{2\pi}f(t)g(t)\,dt.$$

The distance between $f,g \in V$ is

$$\|f-g\| := \frac{1}{\pi} \int_0^{2\pi} (f(t) - g(t))^2 dt.$$

An orthonormal set;

$$S_n := \left\{\frac{1}{\sqrt{2}}, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx)\right\}.$$

Problem: Approximate $f \in V$ with an element in $\text{Span}(S_n)$.