Math 201

Section F03

November 24, 2021

Direct sums

Definition. The direct sum of vector spaces U and W over a field F

Direct sums

Definition. The direct sum of vector spaces U and W over a field F is the set

$$
U \oplus W=\{(u, w): u \in U \text { and } w \in W\}
$$

Direct sums

Definition. The direct sum of vector spaces U and W over a field F is the set

$$
U \oplus W=\{(u, w): u \in U \text { and } w \in W\}
$$

with scalar multiplication and vector addition defined by

$$
\lambda(u, w)=(\lambda u, \lambda w)
$$

Direct sums

Definition. The direct sum of vector spaces U and W over a field F is the set

$$
U \oplus W=\{(u, w): u \in U \text { and } w \in W\}
$$

with scalar multiplication and vector addition defined by

$$
\lambda(u, w)=(\lambda u, \lambda w) \quad \text { and } \quad(u, w)+\left(u^{\prime}, w^{\prime}\right)=\left(u+u^{\prime}, w+w^{\prime}\right),
$$

for all $u, u^{\prime} \in U, w, w^{\prime} \in W$, and $\lambda \in F$.

Direct sums

Proposition. Let U and W be subspaces of a vector space V over F

Direct sums

Proposition. Let U and W be subspaces of a vector space V over F such that:

- the union of U and W spans V,

Direct sums

Proposition. Let U and W be subspaces of a vector space V over F such that:

- the union of U and W spans V,
- $U \cap W=\{0\}$.

Direct sums

Proposition. Let U and W be subspaces of a vector space V over F such that:

- the union of U and W spans V,
- $U \cap W=\{0\}$.

Then there is an isomorphism

$$
\begin{aligned}
U \oplus W & \rightarrow V \\
(u, w) & \mapsto u+w .
\end{aligned}
$$

Direct sums

Proposition. Let U and W be subspaces of a vector space V over F such that:

- the union of U and W spans V,
- $U \cap W=\{0\}$.

Then there is an isomorphism

$$
\begin{aligned}
U \oplus W & \rightarrow V \\
(u, w) & \mapsto u+w .
\end{aligned}
$$

Thus, every element of V has a unique expression of the form $u+w$ with $u \in U$ and $w \in W$.

Direct sums

Proposition. Let U and W be subspaces of a vector space V over F such that:

- the union of U and W spans V,
- $U \cap W=\{0\}$.

Then there is an isomorphism

$$
\begin{aligned}
U \oplus W & \rightarrow V \\
(u, w) & \mapsto u+w .
\end{aligned}
$$

Thus, every element of V has a unique expression of the form $u+w$ with $u \in U$ and $w \in W$.
(internal versus external direct sum)

Review

Recall from last time:
If $S=\left\{v_{1}, \ldots, v_{k}\right\} \subset V$ is orthonormal and $y \in \operatorname{Span} S$, then

$$
y=\sum_{i=1}^{k}\left\langle y, v_{j}\right\rangle v_{i} .
$$

Orthogonal complement

Let $(V,\langle\rangle$,$) be an inner product space over F=\mathbb{R}$ or \mathbb{C}.

Orthogonal complement

Let $(V,\langle\rangle$,$) be an inner product space over F=\mathbb{R}$ or \mathbb{C}.
Definition. Let $S \subseteq V$ be nonempty. The orthogonal complement of S is

$$
S^{\perp}=\{x \in V:\langle x, y\rangle=0 \text { for all } y \in S\}
$$

Orthogonal complement

Let $(V,\langle\rangle$,$) be an inner product space over F=\mathbb{R}$ or \mathbb{C}.
Definition. Let $S \subseteq V$ be nonempty. The orthogonal complement of S is

$$
S^{\perp}=\{x \in V:\langle x, y\rangle=0 \text { for all } y \in S\}
$$

- S^{\perp} is a subspace of V

Orthogonal complement

Let $(V,\langle\rangle$,$) be an inner product space over F=\mathbb{R}$ or \mathbb{C}.
Definition. Let $S \subseteq V$ be nonempty. The orthogonal complement of S is

$$
S^{\perp}=\{x \in V:\langle x, y\rangle=0 \text { for all } y \in S\}
$$

- S^{\perp} is a subspace of V
- Hyperplane example

Main results

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Main results

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z
$$

Main results

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z
$$

The vector $u \in W$ is the orthogonal projection of y onto W.

Main results

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z
$$

The vector $u \in W$ is the orthogonal projection of y onto W. It is the unique closest vector to y that is in W.

Main results

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z
$$

The vector $u \in W$ is the orthogonal projection of y onto W. It is the unique closest vector to y that is in W.

Proposition. If V is finite-dimensional, then

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}
$$

Orthogonal projection

Proposition. Suppose $\operatorname{dim} V=n$ and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal subset of V.

Orthogonal projection

Proposition. Suppose $\operatorname{dim} V=n$ and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal subset of V.
(a) S can be extended to an orthonormal basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V.

Orthogonal projection

Proposition. Suppose $\operatorname{dim} V=n$ and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal subset of V.
(a) S can be extended to an orthonormal basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V.
(b) If $W=\operatorname{Span} S$, then $S^{\prime}=\left\{v_{k+1}, \ldots, v_{n}\right\}$ is an orthonormal basis for W^{\perp}.

Orthogonal projection

Proposition. Suppose $\operatorname{dim} V=n$ and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal subset of V.
(a) S can be extended to an orthonormal basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V.
(b) If $W=\operatorname{Span} S$, then $S^{\prime}=\left\{v_{k+1}, \ldots, v_{n}\right\}$ is an orthonormal basis for W^{\perp}.
(c) If $W \subseteq V$ is any subspace, then

$$
\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V=n
$$

Orthogonal projection

Proposition. Suppose $\operatorname{dim} V=n$ and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal subset of V.
(a) S can be extended to an orthonormal basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V.
(b) If $W=\operatorname{Span} S$, then $S^{\prime}=\left\{v_{k+1}, \ldots, v_{n}\right\}$ is an orthonormal basis for W^{\perp}.
(c) If $W \subseteq V$ is any subspace, then

$$
\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V=n
$$

(d) If $W \subseteq V$ is any subspace, then $\left(W^{\perp}\right)^{\perp}=W$.

Orthogonal projection

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Orthogonal projection

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z
$$

Orthogonal projection

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z
$$

We define u to be the orthogonal projection of y onto W.

Orthogonal projection

Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

Thus, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z
$$

We define u to be the orthogonal projection of y onto W.
If u_{1}, \ldots, u_{k} is an orthonormal basis for W, then

$$
u=\sum_{i=1}^{k}\left\langle y, u_{i}\right\rangle u_{i}
$$

Orthogonal projection

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y :

$$
\|y-u\| \leq\|y-w\|
$$

for all $w \in W$ with equality if and only if $w=u$.

Orthogonal projection

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y :

$$
\|y-u\| \leq\|y-w\|
$$

for all $w \in W$ with equality if and only if $w=u$.

Proof.

Orthogonal projection

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y :

$$
\|y-u\| \leq\|y-w\|
$$

for all $w \in W$ with equality if and only if $w=u$.
Proof. Write $y=u+z$ with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$.

Orthogonal projection

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y :

$$
\|y-u\| \leq\|y-w\|
$$

for all $w \in W$ with equality if and only if $w=u$.
Proof. Write $y=u+z$ with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$.

Then $u-w \in W$ and $y-u \in W^{\perp}$.

Orthogonal projection

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y :

$$
\|y-u\| \leq\|y-w\|
$$

for all $w \in W$ with equality if and only if $w=u$.
Proof. Write $y=u+z$ with $u \in W$ and $z \in W^{\perp}$, and
let $w \in W$.
Then $u-w \in W$ and $y-u \in W^{\perp}$.
So $u-w$ and $z=y-u$ are perpendicular.

Orthogonal projection

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y :

$$
\|y-u\| \leq\|y-w\|
$$

for all $w \in W$ with equality if and only if $w=u$.
Proof. Write $y=u+z$ with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$.

Then $u-w \in W$ and $y-u \in W^{\perp}$.
So $u-w$ and $z=y-u$ are perpendicular.
The result now follows from the Pythagorean theorem:

$$
\|y-w\|^{2}=\cdots
$$

Application

Let V be the vector space of integrable functions $[0,2 \pi] \rightarrow \mathbb{R}$

Application

Let V be the vector space of integrable functions $[0,2 \pi] \rightarrow \mathbb{R}$ with inner product

$$
\langle f, g\rangle:=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) g(t) d t
$$

Application

Let V be the vector space of integrable functions $[0,2 \pi] \rightarrow \mathbb{R}$ with inner product

$$
\langle f, g\rangle:=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) g(t) d t
$$

The distance between $f, g \in V$ is

$$
\|f-g\|:=\frac{1}{\pi} \int_{0}^{2 \pi}(f(t)-g(t))^{2} d t
$$

Application

Let V be the vector space of integrable functions $[0,2 \pi] \rightarrow \mathbb{R}$ with inner product

$$
\langle f, g\rangle:=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) g(t) d t
$$

The distance between $f, g \in V$ is

$$
\|f-g\|:=\frac{1}{\pi} \int_{0}^{2 \pi}(f(t)-g(t))^{2} d t
$$

An orthonormal set;

$$
S_{n}:=\left\{\frac{1}{\sqrt{2}}, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \ldots, \cos (n x), \sin (n x)\right\}
$$

Application

Let V be the vector space of integrable functions $[0,2 \pi] \rightarrow \mathbb{R}$ with inner product

$$
\langle f, g\rangle:=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) g(t) d t
$$

The distance between $f, g \in V$ is

$$
\|f-g\|:=\frac{1}{\pi} \int_{0}^{2 \pi}(f(t)-g(t))^{2} d t
$$

An orthonormal set;
$S_{n}:=\left\{\frac{1}{\sqrt{2}}, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \ldots, \cos (n x), \sin (n x)\right\}$.

Problem: Approximate $f \in V$ with an element in $\operatorname{Span}\left(S_{n}\right)$.

