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» x € Vis a unit vector if ||x|| = 1; equivalently, if (x,x) =1
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Gram-Schmidt

Let (V,(, )) be an inner product space over F =R or C.

S C Vis an orthogonal subset of V if (u,v) =0 forall u,v €S
with u # v.

If S is an orthogonal subset of V and ||u|| =1 forall u € S, then S
is an orthonormal subset of V.

Examples.
» The standard basis {e1, ..., ey} for F" is orthonormal with
respect to the standard inner product.

> {%(1, 1), %(1, —1)} is orthonormal with respect to the

standard inner product on R?.

» S = {cos(x),sin(x)} is orthogonal in the space of continuous
functions C(R) with respect to the inner product

(f.g) = /0 7 F(0)a(t) dt.
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Computing coordinates

Proposition. Let S = {vi,..., v} be an orthogonal set of
nonzero vectors in V, and let y € SpanS. Then

Note that the coefficients are the components of y along each v;.

Corollary 1. If S = {vi,..., v} is orthonormal and y € Span S,

then
k
y=> {y,vj)v
j=1
Corollary 2. Is S = {vi,..., v} is an orthogonal set of nonzero

vectors in V then S is linearly independent.
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Example

Consider R? with the standard inner product, and let

1 1
u=—(1,1) and v:ﬁ(l,—l).

V2

Then 3 = {u, v} gives an orthonormal ordered basis for R2. What
are the coordinates of y = (4,1) with respect to that basis?

5
—=u
\/i /\T'.

u //,/ . (4’ 1)




Gram-Schmidt

Algorithm. (Gram-Schmidt orthogonalization)
INPUT: S ={w1,...,w,}, a linearly independent subset of V.

ouTPUT: S’ = {v1,...,v,} an orthogonal set
with Span §’ = Span S.

or

ouTpuT: §” = {m, ey ”5"”} an orthonormal set

with Span S’ = Span S.



Gram-Schmidt

Algorithm. (Gram-Schmidt orthogonalization)

INPUT: S ={w1,...,w,}, a linearly independent subset of V.
Let

Vi = wWq.
ouTPUT: S’ = {v1,...,v,} an orthogonal set

with Span §’ = Span S.

or

ouTpuT: §” = {m, ey ”5"”} an orthonormal set

with Span S’ = Span S.



Gram-Schmidt

Algorithm. (Gram-Schmidt orthogonalization)
INPUT: S ={w1,...,w,}, a linearly independent subset of V.
Let

Vi = wWq.

For k =2,3,...,n, define v, by starting with wy, then subtracting
off the components of wy along the previously found v; :

ouTPUT: S’ = {v1,...,v,} an orthogonal set
with Span §’ = Span S.

or

ouTpuT: §” = {m, ey ”5"”} an orthonormal set

with Span S’ = Span S.



Gram-Schmidt

Algorithm. (Gram-Schmidt orthogonalization)
INPUT: S ={w1,...,w,}, a linearly independent subset of V.
Let

Vi = wWq.

For k =2,3,...,n, define v, by starting with wy, then subtracting
off the components of wy along the previously found v; :

k—1

. {wi, vi)
= Ly

i=1
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Example

V = R<1[x] with inner product

(r.8) = [ (st et

Apply Gram-Schmidt to the basis {1, x} to get an orthonormal

basis.
Start with v{ = 1, then let

(x, v1) (x,1)

Vo = X — Vi=X— .
[[va]2 1212
1
tdt 1
Jo dt

Check orthogonality:

(1,x—1/2) = /Ol(t— 1/2) dt = 0.
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Example

V = R<1[x] with inner product

(r.8) = [ (0s(0)dt.

Orthogonal basis: {1, x — %} Scale to get an orthonormal basis:

il = [ ar=1
Ivall = /(x = 1/2,x = 1/2) = \//Ol(t _1/22dt = /1/12.

Orthonormal basis: {1, \/%(x — 1/2)}




