

Math 201

Section F03

November 22, 2021

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} .

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

satisfying for all $x, y, z \in V$ and $c \in F$:

1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.

Definition. Let V be a vector space over a field F where F is either $\mathbb R$ or $\mathbb C$. An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

- 1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.
- 2. conjugate symmetry: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

- 1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.
- 2. conjugate symmetry: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.
- 3. positive-definiteness: $\langle x, x \rangle \in \mathbb{R}_{\geq 0}$, and $\langle x, x \rangle = 0$ iff x = 0.

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

- 1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.
- 2. conjugate symmetry: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.
- 3. positive-definiteness: $\langle x, x \rangle \in \mathbb{R}_{\geq 0}$, and $\langle x, x \rangle = 0$ iff x = 0.
- ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

- 1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.
- 2. conjugate symmetry: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.
- 3. positive-definiteness: $\langle x, x \rangle \in \mathbb{R}_{\geq 0}$, and $\langle x, x \rangle = 0$ iff x = 0.
- ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
- \blacktriangleright $x, y \in V$ are orthogonal or perpendicular if $\langle x, y \rangle = 0$

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

- 1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.
- 2. conjugate symmetry: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.
- 3. positive-definiteness: $\langle x, x \rangle \in \mathbb{R}_{\geq 0}$, and $\langle x, x \rangle = 0$ iff x = 0.
- ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
- \blacktriangleright $x, y \in V$ are orthogonal or perpendicular if $\langle x, y \rangle = 0$
- $ightharpoonup x \in V$ is a *unit vector* if ||x|| = 1; equivalently, if $\langle x, x \rangle = 1$

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

 $S\subseteq V$ is an *orthogonal* subset of V if $\langle u,v\rangle=0$ for all $u,v\in S$ with $u\neq v$.

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

 $S\subseteq V$ is an *orthogonal* subset of V if $\langle u,v\rangle=0$ for all $u,v\in S$ with $u\neq v$.

If S is an orthogonal subset of V and ||u||=1 for all $u\in S$, then S is an *orthonormal* subset of V.

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

 $S\subseteq V$ is an *orthogonal* subset of V if $\langle u,v\rangle=0$ for all $u,v\in S$ with $u\neq v$.

If S is an orthogonal subset of V and ||u|| = 1 for all $u \in S$, then S is an *orthonormal* subset of V.

Examples.

▶ The standard basis $\{e_1, \ldots, e_n\}$ for F^n is orthonormal with respect to the standard inner product.

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

 $S\subseteq V$ is an *orthogonal* subset of V if $\langle u,v\rangle=0$ for all $u,v\in S$ with $u\neq v$.

If S is an orthogonal subset of V and ||u|| = 1 for all $u \in S$, then S is an *orthonormal* subset of V.

Examples.

- ▶ The standard basis $\{e_1, \ldots, e_n\}$ for F^n is orthonormal with respect to the standard inner product.
- ▶ $\left\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\right\}$ is orthonormal with respect to the standard inner product on \mathbb{R}^2 .

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

 $S\subseteq V$ is an *orthogonal* subset of V if $\langle u,v\rangle=0$ for all $u,v\in S$ with $u\neq v$.

If S is an orthogonal subset of V and ||u|| = 1 for all $u \in S$, then S is an *orthonormal* subset of V.

Examples.

- ▶ The standard basis $\{e_1, \ldots, e_n\}$ for F^n is orthonormal with respect to the standard inner product.
- ▶ $\left\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\right\}$ is orthonormal with respect to the standard inner product on \mathbb{R}^2 .
- ▶ $S = {\cos(x), \sin(x)}$ is orthogonal in the space of continuous functions $C(\mathbb{R})$ with respect to the inner product

$$\langle f, g \rangle := \int_0^{2\pi} f(t)g(t) dt.$$

Proposition. Let $S = \{v_1, \dots, v_k\}$ be an orthogonal set of nonzero vectors in V, and let $y \in \operatorname{Span} S$. Then

$$y = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\langle v_j, v_j \rangle} v_j = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\|v_j\|^2} v_j.$$

Proposition. Let $S = \{v_1, \dots, v_k\}$ be an orthogonal set of nonzero vectors in V, and let $y \in \operatorname{Span} S$. Then

$$y = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\langle v_j, v_j \rangle} v_j = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\|v_j\|^2} v_j.$$

Note that the coefficients are the components of y along each v_j .

Proposition. Let $S = \{v_1, \dots, v_k\}$ be an orthogonal set of nonzero vectors in V, and let $y \in \operatorname{Span} S$. Then

$$y = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\langle v_j, v_j \rangle} v_j = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\|v_j\|^2} v_j.$$

Note that the coefficients are the components of y along each v_j .

Corollary 1. If $S = \{v_1, \dots, v_k\}$ is orthonormal and $y \in \operatorname{Span} S$, then

$$y = \sum_{j=1}^{k} \langle y, v_j \rangle v_i.$$

Proposition. Let $S = \{v_1, \dots, v_k\}$ be an orthogonal set of nonzero vectors in V, and let $y \in \operatorname{Span} S$. Then

$$y = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\langle v_j, v_j \rangle} v_j = \sum_{j=1}^k \frac{\langle y, v_j \rangle}{\|v_j\|^2} v_j.$$

Note that the coefficients are the components of y along each v_j .

Corollary 1. If $S = \{v_1, \dots, v_k\}$ is orthonormal and $y \in \operatorname{Span} S$, then

$$y = \sum_{j=1}^k \langle y, v_j \rangle v_i.$$

Corollary 2. Is $S = \{v_1, \dots, v_k\}$ is an orthogonal set of nonzero vectors in V then S is linearly independent.

Consider \mathbb{R}^2 with the standard inner product, and let

$$u = \frac{1}{\sqrt{2}}(1,1)$$
 and $v = \frac{1}{\sqrt{2}}(1,-1)$.

Consider \mathbb{R}^2 with the standard inner product, and let

$$u = \frac{1}{\sqrt{2}}(1,1)$$
 and $v = \frac{1}{\sqrt{2}}(1,-1)$.

Then $\beta = \{u, v\}$ gives an orthonormal ordered basis for \mathbb{R}^2 .

Consider \mathbb{R}^2 with the standard inner product, and let

$$u = \frac{1}{\sqrt{2}}(1,1)$$
 and $v = \frac{1}{\sqrt{2}}(1,-1)$.

Then $\beta = \{u, v\}$ gives an orthonormal ordered basis for \mathbb{R}^2 . What are the coordinates of y = (4, 1) with respect to that basis?

Consider \mathbb{R}^2 with the standard inner product, and let

$$u = \frac{1}{\sqrt{2}}(1,1)$$
 and $v = \frac{1}{\sqrt{2}}(1,-1)$.

Then $\beta = \{u, v\}$ gives an orthonormal ordered basis for \mathbb{R}^2 . What are the coordinates of y = (4, 1) with respect to that basis?

Consider \mathbb{R}^2 with the standard inner product, and let

$$u = \frac{1}{\sqrt{2}}(1,1)$$
 and $v = \frac{1}{\sqrt{2}}(1,-1)$.

Then $\beta = \{u, v\}$ gives an orthonormal ordered basis for \mathbb{R}^2 . What are the coordinates of y = (4, 1) with respect to that basis?

Algorithm. (Gram-Schmidt orthogonalization) INPUT: $S = \{w_1, \dots, w_n\}$, a linearly independent subset of V.

OUTPUT:
$$S' = \{v_1, \dots, v_n\}$$
 an orthogonal set with $\operatorname{Span} S' = \operatorname{Span} S$.

OUTPUT: $S'' = \left\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\right\}$ an orthonormal set with $\operatorname{Span} S' = \operatorname{Span} S$.

Algorithm. (Gram-Schmidt orthogonalization) INPUT: $S = \{w_1, \dots, w_n\}$, a linearly independent subset of V. Let $v_1 := w_1$.

with
$$\operatorname{Span} S' = \operatorname{Span} S$$
. or
$$\operatorname{OUTPUT:} \ S'' = \left\{ \frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|} \right\} \text{ an orthonormal set}$$
 with $\operatorname{Span} S' = \operatorname{Span} S$.

OUTPUT: $S' = \{v_1, \dots, v_n\}$ an orthogonal set

Algorithm. (Gram-Schmidt orthogonalization) INPUT: $S = \{w_1, \dots, w_n\}$, a linearly independent subset of V. Let

$$v_1 := w_1$$
.

For k = 2, 3, ..., n, define v_k by starting with w_k , then subtracting off the components of w_k along the previously found v_i :

OUTPUT:
$$S' = \{v_1, \dots, v_n\}$$
 an orthogonal set with $\operatorname{Span} S' = \operatorname{Span} S$.

or

OUTPUT:
$$S'' = \left\{ \frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|} \right\}$$
 an orthonormal set with $\operatorname{Span} S' = \operatorname{Span} S$.

Algorithm. (Gram-Schmidt orthogonalization) INPUT: $S = \{w_1, \dots, w_n\}$, a linearly independent subset of V. Let

$$v_1 := w_1$$
.

For k = 2, 3, ..., n, define v_k by starting with w_k , then subtracting off the components of w_k along the previously found v_i :

$$v_k := w_k - \sum_{i=1}^{k-1} \frac{\langle w_k, v_i \rangle}{\|v_i\|^2} v_i.$$

OUTPUT: $S' = \{v_1, \dots, v_n\}$ an orthogonal set with $\operatorname{Span} S' = \operatorname{Span} S$.

or

OUTPUT: $S'' = \left\{ \frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|} \right\}$ an orthonormal set with $\operatorname{Span} S' = \operatorname{Span} S$.

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Apply Gram-Schmidt to the basis $\{1,x\}$ to get an orthonormal basis.

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Apply Gram-Schmidt to the basis $\{1,x\}$ to get an orthonormal basis.

$$v_2 = x - \frac{\langle x, v_1 \rangle}{\|v_1\|^2} v_1$$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Apply Gram-Schmidt to the basis $\{1,x\}$ to get an orthonormal basis.

$$v_2 = x - \frac{\langle x, v_1 \rangle}{\|v_1\|^2} v_1 = x - \frac{\langle x, 1 \rangle}{\|1\|^2} \cdot 1$$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Apply Gram-Schmidt to the basis $\{1,x\}$ to get an orthonormal basis.

$$v_{2} = x - \frac{\langle x, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} = x - \frac{\langle x, 1 \rangle}{\|1\|^{2}} \cdot 1$$
$$= x - \frac{\int_{0}^{1} t \, dt}{\int_{0}^{1} dt} \cdot 1$$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Apply Gram-Schmidt to the basis $\{1,x\}$ to get an orthonormal basis.

$$v_2 = x - \frac{\langle x, v_1 \rangle}{\|v_1\|^2} v_1 = x - \frac{\langle x, 1 \rangle}{\|1\|^2} \cdot 1$$
$$= x - \frac{\int_0^1 t \, dt}{\int_0^1 dt} \cdot 1 = x - \frac{1}{2}.$$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Apply Gram-Schmidt to the basis $\{1,x\}$ to get an orthonormal basis.

Start with $v_1 = 1$, then let

$$v_{2} = x - \frac{\langle x, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} = x - \frac{\langle x, 1 \rangle}{\|1\|^{2}} \cdot 1$$
$$= x - \frac{\int_{0}^{1} t \, dt}{\int_{0}^{1} dt} \cdot 1 = x - \frac{1}{2}.$$

Check orthogonality:

$$\langle 1, x - 1/2 \rangle = \int_0^1 (t - 1/2) dt = 0.$$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Orthogonal basis: $\{1, x - \frac{1}{2}\}$.

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

$$||v_1|| = \sqrt{\int_0^1 dt} = 1$$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

$$\|v_1\|=\sqrt{\int_0^1\,dt}=1$$

$$||v_2|| = \sqrt{\langle x - 1/2, x - 1/2 \rangle}$$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

$$\|v_1\| = \sqrt{\int_0^1 dt} = 1$$
 $\|v_2\| = \sqrt{\langle x - 1/2, x - 1/2 \rangle} = \sqrt{\int_0^1 (t - 1/2)^2 dt}$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

$$\|v_1\| = \sqrt{\int_0^1 dt} = 1$$

 $\|v_2\| = \sqrt{\langle x - 1/2, x - 1/2 \rangle} = \sqrt{\int_0^1 (t - 1/2)^2 dt} = \sqrt{1/12}.$

 $V = \mathbb{R}_{\leq 1}[x]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt.$$

Orthogonal basis: $\{1, x - \frac{1}{2}\}$. Scale to get an orthonormal basis:

$$\|v_1\| = \sqrt{\int_0^1 dt} = 1$$

 $\|v_2\| = \sqrt{\langle x - 1/2, x - 1/2 \rangle} = \sqrt{\int_0^1 (t - 1/2)^2 dt} = \sqrt{1/12}.$

Orthonormal basis: $\left\{1, \frac{1}{\sqrt{12}}(x-1/2)\right\}$