

Math 201

Section F03

November 17, 2021

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} .

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

satisfying for all $x, y, z \in V$ and $c \in F$:

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

satisfying for all $x, y, z \in V$ and $c \in F$:

1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

satisfying for all $x, y, z \in V$ and $c \in F$:

- 1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle.$
- 2. conjugate symmetry: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.

Definition. Let V be a vector space over a field F where F is either \mathbb{R} or \mathbb{C} . An *inner product* on V is a function

$$\langle , \rangle \colon V \times V \to F$$

 $(x,y) \mapsto \langle x,y \rangle$

satisfying for all $x, y, z \in V$ and $c \in F$:

- 1. linearity: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ and $\langle cx,y\rangle=c\langle x,y\rangle$.
- 2. conjugate symmetry: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.
- 3. positive-definiteness: $\langle x, x \rangle \in \mathbb{R}_{\geq 0}$, and $\langle x, x \rangle = 0$ iff x = 0.

Properties

Proposition. Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} . Then for all $x, y, z \in V$ and $c \in F$,

- (a) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$.
- (b) $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$.
- (c) $\langle x, 0 \rangle = \langle 0, y \rangle = 0$.
- (d) If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$, then y = z.

 (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C}

$$(V, \langle , \rangle)$$
: inner product space over $F = \mathbb{R}$ or \mathbb{C}

▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$

$$(V, \langle , \rangle)$$
: inner product space over $F = \mathbb{R}$ or \mathbb{C}

- ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
- \blacktriangleright $x, y \in V$ are orthogonal or perpendicular if $\langle x, y \rangle = 0$

- (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C}
 - ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
 - $\blacktriangleright \ x,y \in V$ are orthogonal or perpendicular if $\langle x,y \rangle = 0$
 - \triangleright $x \in V$ is a unit vector if ||x|| = 1;

- (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C}
 - ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
 - $ightharpoonup x,y\in V$ are orthogonal or perpendicular if $\langle x,y\rangle=0$
 - \blacktriangleright $x \in V$ is a *unit vector* if ||x|| = 1; equivalently, if $\langle x, x \rangle = 1$

Examples

 $V=\mathbb{R}^n$, $\langle x,y
angle = x \cdot y$, the usual dot product. Then for $x \in \mathbb{R}^n$,

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

Examples

$$V=\mathbb{R}^n$$
, $\langle x,y
angle=x\cdot y$, the usual dot product. Then for $x\in\mathbb{R}^n$,
$$\|x\|=\sqrt{x_1^2+\cdots+x_n^2}.$$

 $V=\mathbb{C}^n$, $\langle x,y\rangle=x\cdot\overline{y}$, the usual dot product on \mathbb{C}^n . Then for $z\in\mathbb{C}^n$,

$$||z|| = \sqrt{z_1 \overline{z_1} + \dots + z_n \overline{z_n}}$$
$$= \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$

Examples

 $V=\mathbb{R}^n$, $\langle x,y\rangle=x\cdot y$, the usual dot product. Then for $x\in\mathbb{R}^n$,

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

 $V=\mathbb{C}^n$, $\langle x,y\rangle=x\cdot\overline{y}$, the usual dot product on \mathbb{C}^n . Then for $z\in\mathbb{C}^n$,

$$||z|| = \sqrt{z_1 \overline{z_1} + \dots + z_n \overline{z_n}}$$
$$= \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$

If we identify \mathbb{C}^n with \mathbb{R}^{2n} via the isomorphism

$$(x_1 + iy_1, \dots, x_n + iy_n) \to (x_1, y_1, \dots, x_n, y_n),$$

then the isomorphism preserves norms.