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Powers of a matrix

Suppose P~'AP = D = diag(\1,...,\n). Then,
D' = (P7'AP)*
= (P7LAP)(PTAP)(PTIAP)--- (PTAP)(PT1AP)
= P rA(PPTHAPP HAPPY) ... (PPHAP
= P71A'P.
Therefore,

Al — pptp—t — Pdiag(A;{, e 7>\£)P_1'
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How many are closed?
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Adjacency matrix

Definition. Let G be a graph with vertices v1,...,v,. The
adjacency matrix of G is the n x n matrix A = A(G) defined by

{1 if there is an edge connecting v; and v;
Ij =

0 otherwise.

Theorem. Let A be the adjacency matrix for a graph G with
vertices vi,...,V,, and let £ € Z > 0. Then then number of walks
of length ¢ from v; to v; is (A);.

(Diamond graph example.)
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Spectral theorem

Good news:

Spectral theorem. If A is an n x n symmetric matrix (A = A?)
over the real numbers, then it is diagonalizable over R.

So we can write A = PD‘P~1 when A is the adjacency matrix of
a (undirected) graph.

For each pair of vertices v and w there are constants cy,..., ¢,
such that

# length £ walks (v = w) = a4+ + )\
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Closed walks

Definition. A walk is closed if it begins and ends at the same
vertex.

Proposition. Let A be the adjacency matrix of a graph G. Then
the number of closed walks in G of length £ is tr(A?) := 327 ; A

Proposition. Let A be any n X n matrix.

1. The trace of A is the sum of its eigenvalues, each counted
according to its (algebraic) multiplicity.
2. If A1,..., \, are the eigenvalues for A, then X{, ..., )\ﬁ are the

eigenvalues for A’.

Corollary. Let A be the adjacency matrix of a graph G with n
vertices, and let \1,..., A, € R be its list of (not necessarily
distinct) eigenvalues. Then the number of closed walks in G of
length £ is 3271 AL



Example

Compute the number of closed walks of length £ in the diamond
graph:
V3

V4 V2

Vi



Extensions

The ideas presented today generalize to directed graphs and to
graphs with weighted edges.



