

## Math 201

#### ${\sf Section}\ {\sf F03}$

#### November 15, 2021

Suppose  $P^{-1}AP = D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ .

Suppose 
$$P^{-1}AP = D = \text{diag}(\lambda_1, \dots, \lambda_n)$$
. Then,

$$D^{\ell} = (P^{-1}AP)^{\ell}$$

Suppose 
$$P^{-1}AP = D = \text{diag}(\lambda_1, \dots, \lambda_n)$$
. Then,

$$D^{\ell} = (P^{-1}AP)^{\ell}$$
  
= (P^{-1}AP)(P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP)(P^{-1}AP)

Suppose 
$$P^{-1}AP = D = diag(\lambda_1, ..., \lambda_n)$$
. Then,  
 $D^{\ell} = (P^{-1}AP)^{\ell}$   
 $= (P^{-1}AP)(P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP)(P^{-1}AP)$   
 $= P^{-1}A(PP^{-1})A(PP^{-1})A(PP^{-1}) \cdots (PP^{-1})AP$ 

Suppose 
$$P^{-1}AP = D = \text{diag}(\lambda_1, ..., \lambda_n)$$
. Then,  
 $D^{\ell} = (P^{-1}AP)^{\ell}$   
 $= (P^{-1}AP)(P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP)(P^{-1}AP)$   
 $= P^{-1}A(PP^{-1})A(PP^{-1})A(PP^{-1}) \cdots (PP^{-1})AP$   
 $= P^{-1}A^{\ell}P$ .

Suppose 
$$P^{-1}AP = D = \text{diag}(\lambda_1, ..., \lambda_n)$$
. Then,  
 $D^{\ell} = (P^{-1}AP)^{\ell}$   
 $= (P^{-1}AP)(P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP)(P^{-1}AP)$   
 $= P^{-1}A(PP^{-1})A(PP^{-1})A(PP^{-1}) \cdots (PP^{-1})AP$   
 $= P^{-1}A^{\ell}P.$ 

Therefore,

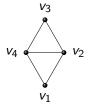
$$\mathcal{A}^\ell = \mathcal{P} \mathcal{D}^\ell \mathcal{P}^{-1} = \mathcal{P} \operatorname{diag}(\lambda_1^\ell, \dots, \lambda_n^\ell) \mathcal{P}^{-1}$$

A walk of length  $\ell$  in a graph is a sequence of vertices  $u_0u_1 \dots u_\ell$ where  $u_{i-1}$  is connected to  $u_i$  by an edge for  $i = 1, \dots, \ell$ .

A walk of length  $\ell$  in a graph is a sequence of vertices  $u_0u_1 \dots u_\ell$ where  $u_{i-1}$  is connected to  $u_i$  by an edge for  $i = 1, \dots, \ell$ . So the length is the number of edges traversed.

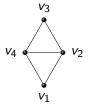
A walk of length  $\ell$  in a graph is a sequence of vertices  $u_0u_1 \dots u_\ell$ where  $u_{i-1}$  is connected to  $u_i$  by an edge for  $i = 1, \dots, \ell$ . So the length is the number of edges traversed.

Find the walks of lengths  $\ell=0,1,2,3$  starting at vertex  $v_1$  in



A walk of length  $\ell$  in a graph is a sequence of vertices  $u_0u_1 \dots u_\ell$ where  $u_{i-1}$  is connected to  $u_i$  by an edge for  $i = 1, \dots, \ell$ . So the length is the number of edges traversed.

Find the walks of lengths  $\ell = 0, 1, 2, 3$  starting at vertex  $v_1$  in



How many are *closed*?

#### Adjacency matrix

**Definition.** Let G be a graph with vertices  $v_1, \ldots, v_n$ . The *adjacency matrix* of G is the  $n \times n$  matrix A = A(G) defined by

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge connecting } v_i \text{ and } v_j \\ 0 & \text{otherwise.} \end{cases}$$

#### Adjacency matrix

**Definition.** Let G be a graph with vertices  $v_1, \ldots, v_n$ . The *adjacency matrix* of G is the  $n \times n$  matrix A = A(G) defined by

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge connecting } v_i \text{ and } v_j \\ 0 & \text{otherwise.} \end{cases}$$

**Theorem.** Let A be the adjacency matrix for a graph G with vertices  $v_1, \ldots, v_n$ , and let  $\ell \in \mathbb{Z} \ge 0$ . Then then number of walks of length  $\ell$  from  $v_i$  to  $v_j$  is  $(A^{\ell})_{ij}$ .

#### Adjacency matrix

**Definition.** Let G be a graph with vertices  $v_1, \ldots, v_n$ . The *adjacency matrix* of G is the  $n \times n$  matrix A = A(G) defined by

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge connecting } v_i \text{ and } v_j \\ 0 & \text{otherwise.} \end{cases}$$

**Theorem.** Let A be the adjacency matrix for a graph G with vertices  $v_1, \ldots, v_n$ , and let  $\ell \in \mathbb{Z} \ge 0$ . Then then number of walks of length  $\ell$  from  $v_i$  to  $v_j$  is  $(A^{\ell})_{ij}$ .

(Diamond graph example.)

#### Spectral theorem

Good news:

**Spectral theorem.** If A is an  $n \times n$  symmetric matrix  $(A = A^t)$  over the real numbers, then it is diagonalizable over  $\mathbb{R}$ .

#### Spectral theorem

Good news:

**Spectral theorem.** If A is an  $n \times n$  symmetric matrix  $(A = A^t)$  over the real numbers, then it is diagonalizable over  $\mathbb{R}$ .

So we can write  $A^{\ell} = PD^{\ell}P^{-1}$  when A is the adjacency matrix of a (undirected) graph.

#### Spectral theorem

Good news:

**Spectral theorem.** If A is an  $n \times n$  symmetric matrix  $(A = A^t)$  over the real numbers, then it is diagonalizable over  $\mathbb{R}$ .

So we can write  $A^{\ell} = PD^{\ell}P^{-1}$  when A is the adjacency matrix of a (undirected) graph.

For each pair of vertices v and w there are constants  $c_1, \ldots, c_n$  such that

$$\# \text{ length } \ell \text{ walks } (v \to w) = c_1 \lambda_1^\ell + \dots + c_n \lambda_n^\ell.$$

**Definition.** A walk is *closed* if it begins and ends at the same vertex.

**Definition.** A walk is *closed* if it begins and ends at the same vertex.

**Proposition.** Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length  $\ell$  is  $tr(A^{\ell}) := \sum_{i=1}^{n} A_{ii}^{\ell}$ .

**Definition.** A walk is *closed* if it begins and ends at the same vertex.

**Proposition.** Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length  $\ell$  is  $tr(A^{\ell}) := \sum_{i=1}^{n} A_{ii}^{\ell}$ .

**Proposition.** Let A be any  $n \times n$  matrix.

**Definition.** A walk is *closed* if it begins and ends at the same vertex.

**Proposition.** Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length  $\ell$  is  $tr(A^{\ell}) := \sum_{i=1}^{n} A_{ii}^{\ell}$ .

**Proposition.** Let A be any  $n \times n$  matrix.

1. The trace of A is the sum of its eigenvalues, each counted according to its (algebraic) multiplicity.

**Definition.** A walk is *closed* if it begins and ends at the same vertex.

**Proposition.** Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length  $\ell$  is  $tr(A^{\ell}) := \sum_{i=1}^{n} A_{ii}^{\ell}$ .

**Proposition.** Let A be any  $n \times n$  matrix.

- 1. The trace of A is the sum of its eigenvalues, each counted according to its (algebraic) multiplicity.
- 2. If  $\lambda_1, \ldots, \lambda_n$  are the eigenvalues for A, then  $\lambda_1^{\ell}, \ldots, \lambda_n^{\ell}$  are the eigenvalues for  $A^{\ell}$ .

**Definition.** A walk is *closed* if it begins and ends at the same vertex.

**Proposition.** Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length  $\ell$  is  $tr(A^{\ell}) := \sum_{i=1}^{n} A_{ii}^{\ell}$ .

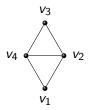
**Proposition.** Let A be any  $n \times n$  matrix.

- 1. The trace of A is the sum of its eigenvalues, each counted according to its (algebraic) multiplicity.
- 2. If  $\lambda_1, \ldots, \lambda_n$  are the eigenvalues for A, then  $\lambda_1^{\ell}, \ldots, \lambda_n^{\ell}$  are the eigenvalues for  $A^{\ell}$ .

**Corollary.** Let A be the adjacency matrix of a graph G with n vertices, and let  $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$  be its list of (not necessarily distinct) eigenvalues. Then the number of closed walks in G of length  $\ell$  is  $\sum_{i=1}^{n} \lambda_i^{\ell}$ .



# Compute the number of closed walks of length $\ell$ in the diamond graph:



#### Extensions

The ideas presented today generalize to directed graphs and to graphs with weighted edges.