Math 201

Section F03

November 15, 2021

Powers of a matrix

Suppose $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Powers of a matrix

Suppose $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then,

$$
D^{\ell}=\left(P^{-1} A P\right)^{\ell}
$$

Powers of a matrix

Suppose $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then,

$$
\begin{aligned}
D^{\ell} & =\left(P^{-1} A P\right)^{\ell} \\
& =\left(P^{-1} A P\right)\left(P^{-1} A P\right)\left(P^{-1} A P\right) \cdots\left(P^{-1} A P\right)\left(P^{-1} A P\right)
\end{aligned}
$$

Powers of a matrix

Suppose $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then,

$$
\begin{aligned}
D^{\ell} & =\left(P^{-1} A P\right)^{\ell} \\
& =\left(P^{-1} A P\right)\left(P^{-1} A P\right)\left(P^{-1} A P\right) \cdots\left(P^{-1} A P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A\left(P P^{-1}\right) A\left(P P^{-1}\right) A\left(P P^{-1}\right) \cdots\left(P P^{-1}\right) A P
\end{aligned}
$$

Powers of a matrix

Suppose $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then,

$$
\begin{aligned}
D^{\ell} & =\left(P^{-1} A P\right)^{\ell} \\
& =\left(P^{-1} A P\right)\left(P^{-1} A P\right)\left(P^{-1} A P\right) \cdots\left(P^{-1} A P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A\left(P P^{-1}\right) A\left(P P^{-1}\right) A\left(P P^{-1}\right) \cdots\left(P P^{-1}\right) A P \\
& =P^{-1} A^{\ell} P
\end{aligned}
$$

Powers of a matrix

Suppose $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then,

$$
\begin{aligned}
D^{\ell} & =\left(P^{-1} A P\right)^{\ell} \\
& =\left(P^{-1} A P\right)\left(P^{-1} A P\right)\left(P^{-1} A P\right) \cdots\left(P^{-1} A P\right)\left(P^{-1} A P\right) \\
& =P^{-1} A\left(P P^{-1}\right) A\left(P P^{-1}\right) A\left(P P^{-1}\right) \cdots\left(P P^{-1}\right) A P \\
& =P^{-1} A^{\ell} P .
\end{aligned}
$$

Therefore,

$$
A^{\ell}=P D^{\ell} P^{-1}=P \operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{n}^{\ell}\right) P^{-1}
$$

Walks in graphs

A walk of length ℓ in a graph is a sequence of vertices $u_{0} u_{1} \ldots u_{\ell}$ where u_{i-1} is connected to u_{i} by an edge for $i=1, \ldots, \ell$.

Walks in graphs

A walk of length ℓ in a graph is a sequence of vertices $u_{0} u_{1} \ldots u_{\ell}$ where u_{i-1} is connected to u_{i} by an edge for $i=1, \ldots, \ell$. So the length is the number of edges traversed.

Walks in graphs

A walk of length ℓ in a graph is a sequence of vertices $u_{0} u_{1} \ldots u_{\ell}$ where u_{i-1} is connected to u_{i} by an edge for $i=1, \ldots, \ell$. So the length is the number of edges traversed.

Find the walks of lengths $\ell=0,1,2,3$ starting at vertex v_{1} in

Walks in graphs

A walk of length ℓ in a graph is a sequence of vertices $u_{0} u_{1} \ldots u_{\ell}$ where u_{i-1} is connected to u_{i} by an edge for $i=1, \ldots, \ell$. So the length is the number of edges traversed.

Find the walks of lengths $\ell=0,1,2,3$ starting at vertex v_{1} in

How many are closed?

Adjacency matrix

Definition. Let G be a graph with vertices v_{1}, \ldots, v_{n}. The adjacency matrix of G is the $n \times n$ matrix $A=A(G)$ defined by

$$
A_{i j}= \begin{cases}1 & \text { if there is an edge connecting } v_{i} \text { and } v_{j} \\ 0 & \text { otherwise. }\end{cases}
$$

Adjacency matrix

Definition. Let G be a graph with vertices v_{1}, \ldots, v_{n}. The adjacency matrix of G is the $n \times n$ matrix $A=A(G)$ defined by

$$
A_{i j}= \begin{cases}1 & \text { if there is an edge connecting } v_{i} \text { and } v_{j} \\ 0 & \text { otherwise. }\end{cases}
$$

Theorem. Let A be the adjacency matrix for a graph G with vertices v_{1}, \ldots, v_{n}, and let $\ell \in \mathbb{Z} \geq 0$. Then then number of walks of length ℓ from v_{i} to v_{j} is $\left(A^{\ell}\right)_{i j}$.

Adjacency matrix

Definition. Let G be a graph with vertices v_{1}, \ldots, v_{n}. The adjacency matrix of G is the $n \times n$ matrix $A=A(G)$ defined by

$$
A_{i j}= \begin{cases}1 & \text { if there is an edge connecting } v_{i} \text { and } v_{j} \\ 0 & \text { otherwise. }\end{cases}
$$

Theorem. Let A be the adjacency matrix for a graph G with vertices v_{1}, \ldots, v_{n}, and let $\ell \in \mathbb{Z} \geq 0$. Then then number of walks of length ℓ from v_{i} to v_{j} is $\left(A^{\ell}\right)_{i j}$.
(Diamond graph example.)

Spectral theorem

Good news:
Spectral theorem. If A is an $n \times n$ symmetric matrix $\left(A=A^{t}\right)$ over the real numbers, then it is diagonalizable over \mathbb{R}.

Spectral theorem

Good news:
Spectral theorem. If A is an $n \times n$ symmetric matrix $\left(A=A^{t}\right)$ over the real numbers, then it is diagonalizable over \mathbb{R}.

So we can write $A^{\ell}=P D^{\ell} P^{-1}$ when A is the adjacency matrix of a (undirected) graph.

Spectral theorem

Good news:
Spectral theorem. If A is an $n \times n$ symmetric matrix $\left(A=A^{t}\right)$ over the real numbers, then it is diagonalizable over \mathbb{R}.

So we can write $A^{\ell}=P D^{\ell} P^{-1}$ when A is the adjacency matrix of a (undirected) graph.

For each pair of vertices v and w there are constants c_{1}, \ldots, c_{n} such that
\# length ℓ walks $(v \rightarrow w)=c_{1} \lambda_{1}^{\ell}+\cdots+c_{n} \lambda_{n}^{\ell}$.

Closed walks

Definition. A walk is closed if it begins and ends at the same vertex.

Closed walks

Definition. A walk is closed if it begins and ends at the same vertex.

Proposition. Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length ℓ is $\operatorname{tr}\left(A^{\ell}\right):=\sum_{i=1}^{n} A_{i i}^{\ell}$.

Closed walks

Definition. A walk is closed if it begins and ends at the same vertex.

Proposition. Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length ℓ is $\operatorname{tr}\left(A^{\ell}\right):=\sum_{i=1}^{n} A_{i i}^{\ell}$.
Proposition. Let A be any $n \times n$ matrix.

Closed walks

Definition. A walk is closed if it begins and ends at the same vertex.

Proposition. Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length ℓ is $\operatorname{tr}\left(A^{\ell}\right):=\sum_{i=1}^{n} A_{i i}^{\ell}$.
Proposition. Let A be any $n \times n$ matrix.

1. The trace of A is the sum of its eigenvalues, each counted according to its (algebraic) multiplicity.

Closed walks

Definition. A walk is closed if it begins and ends at the same vertex.

Proposition. Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length ℓ is $\operatorname{tr}\left(A^{\ell}\right):=\sum_{i=1}^{n} A_{i i}^{\ell}$.
Proposition. Let A be any $n \times n$ matrix.

1. The trace of A is the sum of its eigenvalues, each counted according to its (algebraic) multiplicity.
2. If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues for A, then $\lambda_{1}^{\ell}, \ldots, \lambda_{n}^{\ell}$ are the eigenvalues for A^{ℓ}.

Closed walks

Definition. A walk is closed if it begins and ends at the same vertex.

Proposition. Let A be the adjacency matrix of a graph G. Then the number of closed walks in G of length ℓ is $\operatorname{tr}\left(A^{\ell}\right):=\sum_{i=1}^{n} A_{i i}^{\ell}$.
Proposition. Let A be any $n \times n$ matrix.

1. The trace of A is the sum of its eigenvalues, each counted according to its (algebraic) multiplicity.
2. If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues for A, then $\lambda_{1}^{\ell}, \ldots, \lambda_{n}^{\ell}$ are the eigenvalues for A^{ℓ}.

Corollary. Let A be the adjacency matrix of a graph G with n vertices, and let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ be its list of (not necessarily distinct) eigenvalues. Then the number of closed walks in G of length ℓ is $\sum_{i=1}^{n} \lambda_{i}^{\ell}$.

Example

Compute the number of closed walks of length ℓ in the diamond graph:

Extensions

The ideas presented today generalize to directed graphs and to graphs with weighted edges.

