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(V,(,)): inner product space over F =R or C

» norm or length of x € V: ||x]| = v/(x,x) € R>
» x,y € V are orthogonal or perpendicular if (x,y) =0

» x € Vis a unit vector if ||x|| = 1; equivalently, if (x,x) =1
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Examples

V =R", (x,y) = x -y, the usual dot product. Then for x € R”,

Iell = 3+ + 2

V =C", (x,y) = x -, the usual dot product on C". Then
for z € C",

|zl = VZaiZr + -+ + znZn
=P+ + |z

If we identify C" with R?" via the isomorphism

(X1 + iyl,.. <y Xn T+ /_yn) — (X1,Y17- . .,Xn,yn)7

then the isomorphism preserves norms.



Pythagorean theorem

Proposition. (Pythagorean theorem) Let (V/,(,)) be an inner
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Components and projections

Definition. Let (V,(, )) be an inner product space over F =R
or C, and let x,y € V with y # 0. The component of x along y is

the scalar
) )

vy IR
The orthogonal projection of x to y is the vector cy.
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Important properties

Proposition. Let (V,(, )) be an inner product space over F = R
or C. Let x,y € Vand c€ F. Then

(@) llex|l = fellix]l-

(b) ||x]] = 0 if and only if x = 0.

(c) Cauchy-Schwarz inequality: |(x, y)| < |Ix]|||y|l-
(d)

d) Triangle inequality: ||x + y|| < ||x||+]ly]
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Distance. Let (V,(, )) be an inner product space over R or C.
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Distance. Let (V,(, )) be an inner product space over R or C.
The distance between x,y € V is defined to be

d(x,y) =[x -yl

Proposition. For all x,y,z € V,
1. Symmetry: d(x,y) = d(y, x).
2. Positive-definiteness: d(x,y and d(x,y) =0iff x = y.

>0,
d(x,z) +d(z,y).

)
3. Triangle inequality: d(x,y) <
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Angles

Definition. Let (V,(, )) be an inner product space over F = R,
and let x, y be nonzero elements of V. The angle 6 between x

and y is
0 = cos* < x.y) >
Iyl
and thus,
(x,y) = lIx[llly |l cos(8).
Remarks.

> Cauchy-Schwarz = —1 < &%) <1

IESIEA]
> cos(f) = <§”, |§”>



