

Math 201

Section F03

November 19, 2021

 (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C}

$$(V, \langle , \rangle)$$
: inner product space over $F = \mathbb{R}$ or \mathbb{C}

▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$

$$(V, \langle , \rangle)$$
: inner product space over $F = \mathbb{R}$ or \mathbb{C}

- ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
- \blacktriangleright $x, y \in V$ are orthogonal or perpendicular if $\langle x, y \rangle = 0$

- (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C}
 - ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
 - $\blacktriangleright \ x,y \in V$ are orthogonal or perpendicular if $\langle x,y \rangle = 0$
 - \triangleright $x \in V$ is a unit vector if ||x|| = 1;

- (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C}
 - ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$
 - $ightharpoonup x,y\in V$ are orthogonal or perpendicular if $\langle x,y\rangle=0$
 - \blacktriangleright $x \in V$ is a *unit vector* if ||x|| = 1; equivalently, if $\langle x, x \rangle = 1$

Examples

 $V=\mathbb{R}^n$, $\langle x,y
angle = x \cdot y$, the usual dot product. Then for $x \in \mathbb{R}^n$,

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

Examples

$$V=\mathbb{R}^n$$
, $\langle x,y
angle=x\cdot y$, the usual dot product. Then for $x\in\mathbb{R}^n$,
$$\|x\|=\sqrt{x_1^2+\cdots+x_n^2}.$$

 $V=\mathbb{C}^n$, $\langle x,y\rangle=x\cdot\overline{y}$, the usual dot product on \mathbb{C}^n . Then for $z\in\mathbb{C}^n$,

$$||z|| = \sqrt{z_1 \overline{z_1} + \dots + z_n \overline{z_n}}$$
$$= \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$

Examples

 $V = \mathbb{R}^n$, $\langle x, y \rangle = x \cdot y$, the usual dot product. Then for $x \in \mathbb{R}^n$,

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

 $V=\mathbb{C}^n$, $\langle x,y\rangle=x\cdot\overline{y}$, the usual dot product on \mathbb{C}^n . Then for $z\in\mathbb{C}^n$,

$$||z|| = \sqrt{z_1 \overline{z_1} + \dots + z_n \overline{z_n}}$$
$$= \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$

If we identify \mathbb{C}^n with \mathbb{R}^{2n} via the isomorphism

$$(x_1 + iy_1, \dots, x_n + iy_n) \to (x_1, y_1, \dots, x_n, y_n),$$

then the isomorphism preserves norms.

Pythagorean theorem

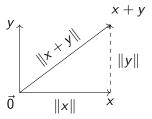
Proposition. (Pythagorean theorem) Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} , and let $x, y \in V$ be perpendicular. Then

$$||x||^2 + ||y||^2 = ||x + y||^2.$$

Pythagorean theorem

Proposition. (Pythagorean theorem) Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} , and let $x, y \in V$ be perpendicular. Then

$$||x||^2 + ||y||^2 = ||x + y||^2.$$



Components and projections

Definition. Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} , and let $x, y \in V$ with $y \neq 0$. The *component* of x along y is the scalar

$$c = \frac{\langle x, y \rangle}{\langle y, y \rangle} = \frac{\langle x, y \rangle}{\|y\|^2}.$$

The *orthogonal projection* of x to y is the vector cy.

(a)
$$||cx|| = |c|||x||$$
.

- (a) ||cx|| = |c|||x||.
- (b) ||x|| = 0 if and only if x = 0.

- (a) ||cx|| = |c|||x||.
- (b) ||x|| = 0 if and only if x = 0.
- (c) Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x|| ||y||$.

- (a) ||cx|| = |c|||x||.
- (b) ||x|| = 0 if and only if x = 0.
- (c) Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x|| ||y||$.
- (d) Triangle inequality: $||x + y|| \le ||x|| + ||y||$.

Distance

Distance. Let (V, \langle , \rangle) be an inner product space over \mathbb{R} or \mathbb{C} . The *distance* between $x, y \in V$ is defined to be

$$d(x,y) := ||x-y||.$$

Distance

Distance. Let (V, \langle , \rangle) be an inner product space over \mathbb{R} or \mathbb{C} . The *distance* between $x, y \in V$ is defined to be

$$d(x,y) := ||x-y||.$$

Proposition. For all $x, y, z \in V$,

- 1. Symmetry: d(x, y) = d(y, x).
- 2. Positive-definiteness: $d(x,y) \ge 0$, and d(x,y) = 0 iff x = y.
- 3. Triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$.

Definition. Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V.

Definition. Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is

$$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$

Definition. Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is

$$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$

and thus,

$$\langle x,y\rangle = \|x\|\|y\|\cos(\theta).$$

Definition. Let $(V, \langle \ , \ \rangle)$ be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is

$$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$

and thus,

$$\langle x,y\rangle = \|x\|\|y\|\cos(\theta).$$

Remarks.

► Cauchy-Schwarz $\Rightarrow -1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1$

Definition. Let $(V, \langle \ , \ \rangle)$ be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is

$$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$

and thus,

$$\langle x,y\rangle = \|x\|\|y\|\cos(\theta).$$

Remarks.

- ► Cauchy-Schwarz $\Rightarrow -1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1$