Math 201 Section F03 November 19, 2021 (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C} $$(V, \langle , \rangle)$$: inner product space over $F = \mathbb{R}$ or \mathbb{C} ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$ $$(V, \langle , \rangle)$$: inner product space over $F = \mathbb{R}$ or \mathbb{C} - ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$ - \blacktriangleright $x, y \in V$ are orthogonal or perpendicular if $\langle x, y \rangle = 0$ - (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C} - ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$ - $\blacktriangleright \ x,y \in V$ are orthogonal or perpendicular if $\langle x,y \rangle = 0$ - \triangleright $x \in V$ is a unit vector if ||x|| = 1; - (V, \langle , \rangle) : inner product space over $F = \mathbb{R}$ or \mathbb{C} - ▶ norm or length of $x \in V$: $||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$ - $ightharpoonup x,y\in V$ are orthogonal or perpendicular if $\langle x,y\rangle=0$ - \blacktriangleright $x \in V$ is a *unit vector* if ||x|| = 1; equivalently, if $\langle x, x \rangle = 1$ #### **Examples** $V=\mathbb{R}^n$, $\langle x,y angle = x \cdot y$, the usual dot product. Then for $x \in \mathbb{R}^n$, $$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$ #### Examples $$V=\mathbb{R}^n$$, $\langle x,y angle=x\cdot y$, the usual dot product. Then for $x\in\mathbb{R}^n$, $$\|x\|=\sqrt{x_1^2+\cdots+x_n^2}.$$ $V=\mathbb{C}^n$, $\langle x,y\rangle=x\cdot\overline{y}$, the usual dot product on \mathbb{C}^n . Then for $z\in\mathbb{C}^n$, $$||z|| = \sqrt{z_1 \overline{z_1} + \dots + z_n \overline{z_n}}$$ $$= \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$ #### **Examples** $V = \mathbb{R}^n$, $\langle x, y \rangle = x \cdot y$, the usual dot product. Then for $x \in \mathbb{R}^n$, $$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$ $V=\mathbb{C}^n$, $\langle x,y\rangle=x\cdot\overline{y}$, the usual dot product on \mathbb{C}^n . Then for $z\in\mathbb{C}^n$, $$||z|| = \sqrt{z_1 \overline{z_1} + \dots + z_n \overline{z_n}}$$ $$= \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$ If we identify \mathbb{C}^n with \mathbb{R}^{2n} via the isomorphism $$(x_1 + iy_1, \dots, x_n + iy_n) \to (x_1, y_1, \dots, x_n, y_n),$$ then the isomorphism preserves norms. ### Pythagorean theorem **Proposition.** (Pythagorean theorem) Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} , and let $x, y \in V$ be perpendicular. Then $$||x||^2 + ||y||^2 = ||x + y||^2.$$ ### Pythagorean theorem **Proposition.** (Pythagorean theorem) Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} , and let $x, y \in V$ be perpendicular. Then $$||x||^2 + ||y||^2 = ||x + y||^2.$$ ### Components and projections **Definition.** Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} , and let $x, y \in V$ with $y \neq 0$. The *component* of x along y is the scalar $$c = \frac{\langle x, y \rangle}{\langle y, y \rangle} = \frac{\langle x, y \rangle}{\|y\|^2}.$$ The *orthogonal projection* of x to y is the vector cy. (a) $$||cx|| = |c|||x||$$. - (a) ||cx|| = |c|||x||. - (b) ||x|| = 0 if and only if x = 0. - (a) ||cx|| = |c|||x||. - (b) ||x|| = 0 if and only if x = 0. - (c) Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x|| ||y||$. - (a) ||cx|| = |c|||x||. - (b) ||x|| = 0 if and only if x = 0. - (c) Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x|| ||y||$. - (d) Triangle inequality: $||x + y|| \le ||x|| + ||y||$. #### Distance **Distance.** Let (V, \langle , \rangle) be an inner product space over \mathbb{R} or \mathbb{C} . The *distance* between $x, y \in V$ is defined to be $$d(x,y) := ||x-y||.$$ #### Distance **Distance.** Let (V, \langle , \rangle) be an inner product space over \mathbb{R} or \mathbb{C} . The *distance* between $x, y \in V$ is defined to be $$d(x,y) := ||x-y||.$$ **Proposition.** For all $x, y, z \in V$, - 1. Symmetry: d(x, y) = d(y, x). - 2. Positive-definiteness: $d(x,y) \ge 0$, and d(x,y) = 0 iff x = y. - 3. Triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$. **Definition.** Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. **Definition.** Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is $$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$ **Definition.** Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is $$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$ and thus, $$\langle x,y\rangle = \|x\|\|y\|\cos(\theta).$$ **Definition.** Let $(V, \langle \ , \ \rangle)$ be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is $$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$ and thus, $$\langle x,y\rangle = \|x\|\|y\|\cos(\theta).$$ #### Remarks. ► Cauchy-Schwarz $\Rightarrow -1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1$ **Definition.** Let $(V, \langle \ , \ \rangle)$ be an inner product space over $F = \mathbb{R}$, and let x, y be nonzero elements of V. The angle θ between x and y is $$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right),$$ and thus, $$\langle x,y\rangle = \|x\|\|y\|\cos(\theta).$$ #### Remarks. - ► Cauchy-Schwarz $\Rightarrow -1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1$