Math 201

Section F03

November 10, 2021

Review

Algorithm for diagonalization:

Review

Algorithm for diagonalization:

- Find the zeros of the characteristic polynomial $p_{A}(x)$.

Review

Algorithm for diagonalization:

- Find the zeros of the characteristic polynomial $p_{A}(x)$.
- For each eigenvalue λ, compute a basis for the eigenspace E_{λ}.

Review

Algorithm for diagonalization:

- Find the zeros of the characteristic polynomial $p_{A}(x)$.
- For each eigenvalue λ, compute a basis for the eigenspace E_{λ}.
- If this process results in finding n eigenvectors, v_{1}, \ldots, v_{n}, then A is diagonalizable. Let P be the matrix with columns v_{1}, \ldots, v_{n}. Then

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where $A v_{i}=\lambda_{i}$.

Characteristic polynomial

Proposition. Let A, B be $n \times n$ matrices representing a linear function $f: V \rightarrow V$ with respect to different bases. Then their characteristic polynomials are the same: $p_{A}(x)=p_{B}(x)$.

Characteristic polynomial

Proposition. Let A, B be $n \times n$ matrices representing a linear function $f: V \rightarrow V$ with respect to different bases. Then their characteristic polynomials are the same: $p_{A}(x)=p_{B}(x)$.

Therefore, the following definition makes sense:
Definition. Let V be a finite-dimensional vector space. The characteristic function of a linear transformation $f: V \rightarrow V$ is

$$
p_{f}(x)=\operatorname{det}\left(A-x I_{n}\right)
$$

where A is the matrix representing f with respect to any basis for V.

Eigenvectors with distinct eigenvalues

Proposition. Let V be any vector space, and let $f: V \rightarrow V$ be a linear transformation. Let $v_{1}, \ldots, v_{k} \in V$ be eigenvectors for f with corresponding eigenvalues λ_{i} :

$$
f\left(v_{i}\right)=\lambda_{i} v_{i}
$$

for $i=1, \ldots, k$. Suppose $\lambda_{1}, \ldots, \lambda_{k}$ are distinct. Then v_{1}, \ldots, v_{k} are linearly independent.

Eigenvectors with distinct eigenvalues

Proposition. Let V be any vector space, and let $f: V \rightarrow V$ be a linear transformation. Let $v_{1}, \ldots, v_{k} \in V$ be eigenvectors for f with corresponding eigenvalues λ_{i} :

$$
f\left(v_{i}\right)=\lambda_{i} v_{i}
$$

for $i=1, \ldots, k$. Suppose $\lambda_{1}, \ldots, \lambda_{k}$ are distinct. Then v_{1}, \ldots, v_{k} are linearly independent.

Corollary. Suppose $\operatorname{dim} V=n$ and $f: V \rightarrow V$ is a linear transformation. Then if f has n distinct eigenvalues, it is diagonalizable.

Eigenvectors with distinct eigenvalues

Proposition. Let V be any vector space, and let $f: V \rightarrow V$ be a linear transformation. Let $v_{1}, \ldots, v_{k} \in V$ be eigenvectors for f with corresponding eigenvalues λ_{i} :

$$
f\left(v_{i}\right)=\lambda_{i} v_{i}
$$

for $i=1, \ldots, k$. Suppose $\lambda_{1}, \ldots, \lambda_{k}$ are distinct. Then v_{1}, \ldots, v_{k} are linearly independent.

Corollary. Suppose $\operatorname{dim} V=n$ and $f: V \rightarrow V$ is a linear transformation. Then if f has n distinct eigenvalues, it is diagonalizable. (The converse does not hold.)

Extra material: Cramer's rule

$A \in M_{n \times n}(F)$

Extra material: Cramer's rule

$A \in M_{n \times n}(F)$
Cramer's rule: The solution of the $n \times n$ system $A x=b$ with $b \in F^{n}$ is

$$
x_{j}=\frac{\operatorname{det}\left(M_{j}\right)}{\operatorname{det}(A)}
$$

where $M_{j} \in M_{n \times n}(F)$ is the matrix formed by replacing the j-th column of A with b.

Cramer's rule

- $A^{i j} \in M_{(n-1) \times(n-1)}(F)$: matrix formed by removing the i-th row and j-th column of A

Cramer's rule

- $A^{i j} \in M_{(n-1) \times(n-1)}(F):$ matrix formed by removing the i-th row and j-th column of A
- i, j-th minor of $A: \operatorname{det}\left(A^{i j}\right)$

Cramer's rule

- $A^{i j} \in M_{(n-1) \times(n-1)}(F):$ matrix formed by removing the i-th row and j-th column of A
- i, j-th minor of $A: \operatorname{det}\left(A^{i j}\right)$
- adjugate of A is the $n \times n$ matrix:

$$
\operatorname{adj}(A)_{i j}=(-1)^{i+j} \operatorname{det}\left(A^{j i}\right)
$$

Cramer's rule

- $A^{i j} \in M_{(n-1) \times(n-1)}(F)$: matrix formed by removing the i-th row and j-th column of A
- i,j-th minor of $A: \operatorname{det}\left(A^{i j}\right)$
- adjugate of A is the $n \times n$ matrix:

$$
\operatorname{adj}(A)_{i j}=(-1)^{i+j} \operatorname{det}\left(A^{i i}\right) .
$$

Corollary of Cramer's rule. If $A \in M_{n \times n}(F)$ is invertible, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Cramer's rule

Corollary. If $A \in M_{n \times n}(F)$ is invertible and $F=\mathbb{R}$ of $F=\mathbb{C}$, then

1. the solution for the system of equations $A x=b$ is a continuous function of the entries of A and b, and

Cramer's rule

Corollary. If $A \in M_{n \times n}(F)$ is invertible and $F=\mathbb{R}$ of $F=\mathbb{C}$, then

1. the solution for the system of equations $A x=b$ is a continuous function of the entries of A and b, and
2. the entries of A^{-1} are continuous functions of the entries of A.

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right)
$$

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right), \quad \operatorname{adj}(A)=\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right), \quad \operatorname{adj}(A)=\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

For instance,
$\operatorname{adj}(A)_{1,2}=$

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right), \quad \operatorname{adj}(A)=\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

For instance,

$$
\operatorname{adj}(A)_{1,2}=(-1)^{1+2} \operatorname{det}\left(A^{2,1}\right)
$$

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right), \quad \operatorname{adj}(A)=\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

For instance,

$$
\operatorname{adj}(A)_{1,2}=(-1)^{1+2} \operatorname{det}\left(A^{2,1}\right)=(-1)^{3} \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & 2
\end{array}\right)=2
$$

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right), \quad \operatorname{adj}(A)=\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

For instance,

$$
\operatorname{adj}(A)_{1,2}=(-1)^{1+2} \operatorname{det}\left(A^{2,1}\right)=(-1)^{3} \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & 2
\end{array}\right)=2 .
$$

Using Cramer's rule to compute the inverse of A, we get

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right), \quad \operatorname{adj}(A)=\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

For instance,

$$
\operatorname{adj}(A)_{1,2}=(-1)^{1+2} \operatorname{det}\left(A^{2,1}\right)=(-1)^{3} \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & 2
\end{array}\right)=2 .
$$

Using Cramer's rule to compute the inverse of A, we get

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=-\frac{1}{24}\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

Cramer's rule

$$
A=\left(\begin{array}{rrr}
3 & -1 & 6 \\
-7 & 1 & 2 \\
2 & 0 & 2
\end{array}\right), \quad \operatorname{adj}(A)=\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)
$$

For instance,

$$
\operatorname{adj}(A)_{1,2}=(-1)^{1+2} \operatorname{det}\left(A^{2,1}\right)=(-1)^{3} \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & 2
\end{array}\right)=2 .
$$

Using Cramer's rule to compute the inverse of A, we get

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=-\frac{1}{24}\left(\begin{array}{rrr}
2 & 2 & -8 \\
18 & -6 & -48 \\
-2 & -2 & -4
\end{array}\right)=\left(\begin{array}{rrr}
-\frac{1}{12} & -\frac{1}{12} & \frac{1}{3} \\
-\frac{3}{4} & \frac{1}{4} & 2 \\
\frac{1}{12} & \frac{1}{12} & \frac{1}{6}
\end{array}\right) .
$$

