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Review

Algorithm for diagonalization:

I Find the zeros of the characteristic polynomial pA(x).
I For each eigenvalue λ, compute a basis for the eigenspace Eλ.
I If this process results in finding n eigenvectors, v1, . . . , vn,

then A is diagonalizable. Let P be the matrix with
columns v1, . . . , vn. Then

P−1AP = diag(λ1, . . . , λn)

where Avi = λi .
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Characteristic polynomial

Proposition. Let A,B be n × n matrices representing a linear
function f : V → V with respect to different bases. Then their
characteristic polynomials are the same: pA(x) = pB(x).

Therefore, the following definition makes sense:

Definition. Let V be a finite-dimensional vector space. The
characteristic function of a linear transformation f : V → V is

pf (x) = det(A− xIn)

where A is the matrix representing f with respect to any basis
for V .
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Eigenvectors with distinct eigenvalues

Proposition. Let V be any vector space, and let f : V → V be a
linear transformation. Let v1, . . . , vk ∈ V be eigenvectors for f
with corresponding eigenvalues λi :

f (vi ) = λivi

for i = 1, . . . , k. Suppose λ1, . . . , λk are distinct. Then v1, . . . , vk
are linearly independent.

Corollary. Suppose dim V = n and f : V → V is a linear
transformation. Then if f has n distinct eigenvalues, it is
diagonalizable. (The converse does not hold.)
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Extra material: Cramer’s rule

A ∈ Mn×n(F )

Cramer’s rule: The solution of the n × n system Ax = b
with b ∈ F n is

xj = det(Mj)
det(A)

where Mj ∈ Mn×n(F ) is the matrix formed by replacing the j-th
column of A with b.
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Cramer’s rule

I Aij ∈ M(n−1)×(n−1)(F ): matrix formed by removing the i-th
row and j-th column of A

I i , j-th minor of A: det(Aij)
I adjugate of A is the n × n matrix:

adj(A)ij = (−1)i+j det(Aji ).

Corollary of Cramer’s rule. If A ∈ Mn×n(F ) is invertible, then

A−1 = 1
det(A)adj(A)
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Cramer’s rule

Corollary. If A ∈ Mn×n(F ) is invertible and F = R of F = C, then
1. the solution for the system of equations Ax = b is a

continuous function of the entries of A and b, and

2. the entries of A−1 are continuous functions of the entries of A.
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Cramer’s rule

A =

 3 −1 6
−7 1 2

2 0 2

 ,

adj(A) =

 2 2 −8
18 −6 −48
−2 −2 −4


For instance,

adj(A)1,2 = (−1)1+2 det(A2,1) = (−1)3 det
(
−1 6

0 2

)
= 2.

Using Cramer’s rule to compute the inverse of A, we get

A−1 = 1
det(A)adj(A) = − 1
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