

Math 201

Section F03

November 10, 2021

Algorithm for diagonalization:

Algorithm for diagonalization:

Find the zeros of the characteristic polynomial $p_A(x)$.

Algorithm for diagonalization:

Find the zeros of the characteristic polynomial $p_A(x)$.

For each eigenvalue λ , compute a basis for the eigenspace E_{λ} .

Algorithm for diagonalization:

- Find the zeros of the characteristic polynomial $p_A(x)$.
- For each eigenvalue λ , compute a basis for the eigenspace E_{λ} .
- If this process results in finding n eigenvectors, v₁,..., v_n, then A is diagonalizable. Let P be the matrix with columns v₁,..., v_n. Then

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$$

where $Av_i = \lambda_i$.

Characteristic polynomial

Proposition. Let *A*, *B* be $n \times n$ matrices representing a linear function $f: V \to V$ with respect to different bases. Then their characteristic polynomials are the same: $p_A(x) = p_B(x)$.

Characteristic polynomial

Proposition. Let *A*, *B* be $n \times n$ matrices representing a linear function $f: V \to V$ with respect to different bases. Then their characteristic polynomials are the same: $p_A(x) = p_B(x)$.

Therefore, the following definition makes sense:

Definition. Let V be a finite-dimensional vector space. The *characteristic function* of a linear transformation $f: V \rightarrow V$ is

$$p_f(x) = \det(A - xI_n)$$

where A is the matrix representing f with respect to any basis for V.

Eigenvectors with distinct eigenvalues

Proposition. Let V be any vector space, and let $f: V \to V$ be a linear transformation. Let $v_1, \ldots, v_k \in V$ be eigenvectors for f with corresponding eigenvalues λ_i :

$$f(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$$

for i = 1, ..., k. Suppose $\lambda_1, ..., \lambda_k$ are *distinct*. Then $v_1, ..., v_k$ are linearly independent.

Eigenvectors with distinct eigenvalues

Proposition. Let V be any vector space, and let $f: V \to V$ be a linear transformation. Let $v_1, \ldots, v_k \in V$ be eigenvectors for f with corresponding eigenvalues λ_i :

$$f(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$$

for i = 1, ..., k. Suppose $\lambda_1, ..., \lambda_k$ are *distinct*. Then $v_1, ..., v_k$ are linearly independent.

Corollary. Suppose dim V = n and $f: V \rightarrow V$ is a linear transformation. Then if f has n distinct eigenvalues, it is diagonalizable.

Eigenvectors with distinct eigenvalues

Proposition. Let V be any vector space, and let $f: V \to V$ be a linear transformation. Let $v_1, \ldots, v_k \in V$ be eigenvectors for f with corresponding eigenvalues λ_i :

$$f(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$$

for i = 1, ..., k. Suppose $\lambda_1, ..., \lambda_k$ are *distinct*. Then $v_1, ..., v_k$ are linearly independent.

Corollary. Suppose dim V = n and $f: V \rightarrow V$ is a linear transformation. Then if f has n distinct eigenvalues, it is diagonalizable. (The converse does not hold.)

Extra material: Cramer's rule

 $A \in M_{n \times n}(F)$

Extra material: Cramer's rule

 $A \in M_{n \times n}(F)$

Cramer's rule: The solution of the $n \times n$ system Ax = b with $b \in F^n$ is

$$x_j = rac{\det(M_j)}{\det(A)}$$

where $M_j \in M_{n \times n}(F)$ is the matrix formed by replacing the *j*-th column of A with b.

► A^{ij} ∈ M_{(n-1)×(n-1)}(F): matrix formed by removing the *i*-th row and *j*-th column of A

- ► A^{ij} ∈ M_{(n-1)×(n-1)}(F): matrix formed by removing the *i*-th row and *j*-th column of A
- *i*, *j*-th minor of A: det(A^{ij})

- ► A^{ij} ∈ M_{(n-1)×(n-1)}(F): matrix formed by removing the *i*-th row and *j*-th column of A
- ▶ *i*, *j*-th minor of A: det(A^{ij})
- adjugate of A is the n × n matrix:

$$\operatorname{adj}(A)_{ij} = (-1)^{i+j} \det(A^{ji}).$$

► A^{ij} ∈ M_{(n-1)×(n-1)}(F): matrix formed by removing the *i*-th row and *j*-th column of A

► *i*, *j*-th minor of A: det(A^{ij})

adjugate of A is the n × n matrix:

$$\operatorname{adj}(A)_{ij} = (-1)^{i+j} \operatorname{det}(A^{ji}).$$

Corollary of Cramer's rule. If $A \in M_{n \times n}(F)$ is invertible, then

$$A^{-1} = \frac{1}{\det(A)} \mathrm{adj}(A)$$

Corollary. If $A \in M_{n \times n}(F)$ is invertible and $F = \mathbb{R}$ of $F = \mathbb{C}$, then

1. the solution for the system of equations Ax = b is a continuous function of the entries of A and b, and

Corollary. If $A \in M_{n \times n}(F)$ is invertible and $F = \mathbb{R}$ of $F = \mathbb{C}$, then

- 1. the solution for the system of equations Ax = b is a continuous function of the entries of A and b, and
- 2. the entries of A^{-1} are continuous functions of the entries of A.

$$A = \left(\begin{array}{rrrr} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{array}\right),$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, \quad \operatorname{adj}(A) = \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, \quad \operatorname{adj}(A) = \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

For instance,

$$\mathrm{adj}(A)_{1,2} =$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, \quad \operatorname{adj}(A) = \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

For instance,

$$\operatorname{adj}(A)_{1,2} = (-1)^{1+2} \det(A^{2,1})$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, \quad \operatorname{adj}(A) = \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

For instance,

$$\operatorname{adj}(A)_{1,2} = (-1)^{1+2} \operatorname{det}(A^{2,1}) = (-1)^3 \operatorname{det} \begin{pmatrix} -1 & 6 \\ 0 & 2 \end{pmatrix} = 2.$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, \quad \operatorname{adj}(A) = \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

For instance,

$$\operatorname{adj}(A)_{1,2} = (-1)^{1+2} \operatorname{det}(A^{2,1}) = (-1)^3 \operatorname{det} \begin{pmatrix} -1 & 6 \\ 0 & 2 \end{pmatrix} = 2.$$

Using Cramer's rule to compute the inverse of A, we get

$$A^{-1} = \frac{1}{\det(A)} \mathrm{adj}(A)$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, \quad \operatorname{adj}(A) = \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

For instance,

$$\operatorname{adj}(A)_{1,2} = (-1)^{1+2} \operatorname{det}(A^{2,1}) = (-1)^3 \operatorname{det} \begin{pmatrix} -1 & 6 \\ 0 & 2 \end{pmatrix} = 2.$$

Using Cramer's rule to compute the inverse of A, we get

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = -\frac{1}{24} \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -7 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}, \quad \operatorname{adj}(A) = \begin{pmatrix} 2 & 2 & -8 \\ 18 & -6 & -48 \\ -2 & -2 & -4 \end{pmatrix}$$

For instance,

$$\operatorname{adj}(A)_{1,2} = (-1)^{1+2} \operatorname{det}(A^{2,1}) = (-1)^3 \operatorname{det} \begin{pmatrix} -1 & 6 \\ 0 & 2 \end{pmatrix} = 2.$$

Using Cramer's rule to compute the inverse of A, we get

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = -\frac{1}{24} \begin{pmatrix} 2 & 2 & -8\\ 18 & -6 & -48\\ -2 & -2 & -4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{12} & -\frac{1}{12} & \frac{1}{3}\\ -\frac{3}{4} & \frac{1}{4} & 2\\ \frac{1}{12} & \frac{1}{12} & \frac{1}{6} \end{pmatrix}$$