Math 201

Section F03

October 27, 2021

Permutations

A permutation of a set X is a bijection $X \rightarrow X$.

Permutations

A permutation of a set X is a bijection $X \rightarrow X$.
If σ and τ are permutations of X so is $\sigma \circ \tau$.

Permutations

A permutation of a set X is a bijection $X \rightarrow X$.
If σ and τ are permutations of X so is $\sigma \circ \tau$.
The collection of all permutations of X along with the binary operation of o is called the symmetric group on X.

Permutations

A permutation of a set X is a bijection $X \rightarrow X$.
If σ and τ are permutations of X so is $\sigma \circ \tau$.
The collection of all permutations of X along with the binary operation of o is called the symmetric group on X.

Let $[n]:=\{1, \ldots, n\}$ for $n \geq 1$.

Permutations

A permutation of a set X is a bijection $X \rightarrow X$.
If σ and τ are permutations of X so is $\sigma \circ \tau$.
The collection of all permutations of X along with the binary operation of o is called the symmetric group on X.

Let $[n]:=\{1, \ldots, n\}$ for $n \geq 1$.
The symmetric group of degree n is the symmetric group on [n] and is denoted by \mathfrak{S}_{n}.

Permutations

A permutation of a set X is a bijection $X \rightarrow X$.
If σ and τ are permutations of X so is $\sigma \circ \tau$.
The collection of all permutations of X along with the binary operation of o is called the symmetric group on X.

Let $[n]:=\{1, \ldots, n\}$ for $n \geq 1$.
The symmetric group of degree n is the symmetric group on [n] and is denoted by \mathfrak{S}_{n}.

The number permutations of $[n]$ is $\left|\mathfrak{S}_{n}\right|=n!$.

Permutation matrices

The permutation matrix associated with a permutation $\sigma \in \mathfrak{S}_{n}$ is the matrix P_{σ} which has e_{j} in column $\sigma(j)$ for $j=1, \ldots, n$.

Permutation matrices

The permutation matrix associated with a permutation $\sigma \in \mathfrak{S}_{n}$ is the matrix P_{σ} which has e_{j} in column $\sigma(j)$ for $j=1, \ldots, n$.

Example. $\sigma \in \mathfrak{S}_{4}$ with $\sigma(1)=3, \sigma(2)=1, \sigma(3)=4$, and $\sigma(4)=2$:

σ

Note: $P_{\sigma} P_{\tau}=P_{\tau \circ \sigma}$.

Permutation matrices

The permutation matrix associated with a permutation $\sigma \in \mathfrak{S}_{n}$ is the matrix P_{σ} which has e_{j} in column $\sigma(j)$ for $j=1, \ldots, n$.

Example. $\sigma \in \mathfrak{S}_{4}$ with $\sigma(1)=3, \sigma(2)=1, \sigma(3)=4$, and $\sigma(4)=2$:

σ

$$
P_{\sigma}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Permutation matrices

The permutation matrix associated with a permutation $\sigma \in \mathfrak{S}_{n}$ is the matrix P_{σ} which has e_{j} in column $\sigma(j)$ for $j=1, \ldots, n$.

Example. $\sigma \in \mathfrak{S}_{4}$ with $\sigma(1)=3, \sigma(2)=1, \sigma(3)=4$, and $\sigma(4)=2$:

σ

Note: $P_{\sigma} P_{\tau}=P_{\tau \circ \sigma}$.

Transpositions

A transposition is a permutation that swaps only two elements and leaves the other elements fixed.

Transpositions

A transposition is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.

$=$

Transpositions

A transposition is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.

Definition. The sign of a permutation $\sigma \in \mathfrak{S}_{n}$ is $\operatorname{sign}(\sigma):=\operatorname{det}\left(P_{\sigma}\right) \in\{ \pm 1\}$.

Transpositions

A transposition is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.

Definition. The sign of a permutation $\sigma \in \mathfrak{S}_{n}$ is $\operatorname{sign}(\sigma):=\operatorname{det}\left(P_{\sigma}\right) \in\{ \pm 1\}$. Then σ is even if its sign is 1 and odd if its sign is -1 .

Transpositions

A transposition is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.

Definition. The sign of a permutation $\sigma \in \mathfrak{S}_{n}$ is $\operatorname{sign}(\sigma):=\operatorname{det}\left(P_{\sigma}\right) \in\{ \pm 1\}$. Then σ is even if its sign is 1 and odd if its sign is -1 .

Note: $\sigma \in \mathfrak{S}_{n}$ is even, resp. odd, if it is the composition of an even, resp. odd, number of transpositions.

Permutation matrices

$$
P_{\sigma}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

σ

Think of $\sigma \in \mathfrak{S}_{n}$ as a (non-attacking) rook placement on an $n \times n$ chessboard.

Determinants

Theorem. Let A be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)}
$$

Determinants

Theorem. Let A be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)}
$$

Think of this formula in terms of rook placements.

Determinants example

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)}
$$

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad a_{11} a_{22} a_{33}
$$

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

$$
a_{12} a_{23} a_{31}
$$

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

$$
a_{13} a_{21} a_{32}
$$

Determinants example

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)}
$$

$1 \longrightarrow 1$
$2 \longrightarrow 2$
3
3 $\quad\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$
$-a_{11} a_{23} a_{32}$

Determinants

Theorem. Let A be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)} .
$$

Determinants

Theorem. Let A be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)} .
$$

$-\operatorname{det}\left(A_{11} e_{1}+A_{12} e_{2}+\cdots+A_{1 n} e_{n}, \ldots, A_{n 1} e_{1}+A_{n 2} e_{2}+\cdots+A_{n n} e_{n}\right)$

Determinants

Theorem. Let A be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{G}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)}
$$

$-\operatorname{det}\left(A_{11} e_{1}+A_{12} e_{2}+\cdots+A_{1 n} e_{n}, \ldots, A_{n 1} e_{1}+A_{n 2} e_{2}+\cdots+A_{n n} e_{n}\right)$

- Typical nonzero term in expansion of the above:

$$
A_{1 j_{1}} A_{2 j_{2}} \cdots A_{n j_{n}} \operatorname{det}\left(e_{1 j_{1}}, e_{2 j_{2}}, \ldots, e_{n j_{n}}\right)
$$

with distinct j_{j}.

Determinants

Theorem. Let A be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)}
$$

$-\operatorname{det}\left(A_{11} e_{1}+A_{12} e_{2}+\cdots+A_{1 n} e_{n}, \ldots, A_{n 1} e_{1}+A_{n 2} e_{2}+\cdots+A_{n n} e_{n}\right)$

- Typical nonzero term in expansion of the above:

$$
A_{1 j_{1}} A_{2 j_{2}} \cdots A_{n j_{n}} \operatorname{det}\left(e_{1 j_{1}}, e_{2 j_{2}}, \ldots, e_{n j_{n}}\right)
$$

with distinct j_{i}.
$\rightarrow \operatorname{det}\left(e_{1_{1}}, e_{2 j_{2}}, \ldots, e_{n j_{n}}\right)=\operatorname{sign}(\sigma)= \pm 1$ where $\sigma(i)=j_{i}$

Determinants

Theorem. Let A be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} A_{2 \sigma(2)} \cdots A_{n \sigma(n)}
$$

$-\operatorname{det}\left(A_{11} e_{1}+A_{12} e_{2}+\cdots+A_{1 n} e_{n}, \ldots, A_{n 1} e_{1}+A_{n 2} e_{2}+\cdots+A_{n n} e_{n}\right)$

- Typical nonzero term in expansion of the above:

$$
A_{1 j_{1}} A_{2 j_{2}} \cdots A_{n j_{n}} \operatorname{det}\left(e_{1 j_{1}}, e_{2 j_{2}}, \ldots, e_{n j_{n}}\right)
$$

with distinct j_{j}.
$\rightarrow \operatorname{det}\left(e_{1_{1}}, e_{2 j_{2}}, \ldots, e_{n j_{n}}\right)=\operatorname{sign}(\sigma)= \pm 1$ where $\sigma(i)=j_{i}$

