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Permutations

A permutation of a set X is a bijection X → X .

If σ and τ are permutations of X so is σ ◦ τ .

The collection of all permutations of X along with the binary
operation of ◦ is called the symmetric group on X .

Let [n] := {1, . . . , n} for n ≥ 1.

The symmetric group of degree n is the symmetric group on [n]
and is denoted by Sn.

The number permutations of [n] is |Sn| = n!.
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Permutation matrices

The permutation matrix associated with a permutation σ ∈ Sn is
the matrix Pσ which has ej in column σ(j) for j = 1, . . . , n.

Example. σ ∈ S4 with σ(1) = 3, σ(2) = 1, σ(3) = 4, and
σ(4) = 2:

1 1
2 2
3 3
4 4

σ

Pσ =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0



Note: PσPτ = Pτ◦σ.
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Transpositions

A transposition is a permutation that swaps only two elements and
leaves the other elements fixed.

Every permutation is a composition of transpositions.

1 1
2 2
3 3

=
1 1 1
2 2 2
3 3 3

Definition. The sign of a permutation σ ∈ Sn
is sign(σ) := det(Pσ) ∈ {±1}. Then σ is even if its sign is 1 and
odd if its sign is −1.

Note: σ ∈ Sn is even, resp. odd, if it is the composition of an
even, resp. odd, number of transpositions.
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Permutation matrices

1 1
2 2
3 3
4 4

σ

Pσ =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0



Think of σ ∈ Sn as a (non-attacking) rook placement on an n × n
chessboard.



Determinants

Theorem. Let A be an n × n matrix. Then

det(A) =
∑

σ∈Sn

sign(σ)A1σ(1)A2σ(2) · · ·Anσ(n).

Think of this formula in terms of rook placements.
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Determinants example
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∑

σ∈Sn
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2 2
3 3

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 a11a22a33
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Determinants

Theorem. Let A be an n × n matrix. Then

det(A) =
∑

σ∈Sn

sign(σ)A1σ(1)A2σ(2) · · ·Anσ(n).

I det(A11e1+A12e2+· · ·+A1nen, . . . ,An1e1+An2e2+· · ·+Annen)
I Typical nonzero term in expansion of the above:

A1j1A2j2 · · ·Anjn det(e1j1 , e2j2 , . . . , enjn )

with distinct ji .
I det(e1j1 , e2j2 , . . . , enjn ) = sign(σ) = ±1 where σ(i) = ji
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