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A permutation of a set X is a bijection X — X.
If o and 7 are permutations of X soisc o .

The collection of all permutations of X along with the binary
operation of o is called the symmetric group on X.

Let [n] :={1,...,n} for n > 1.

The symmetric group of degree n is the symmetric group on [n]
and is denoted by G,,.

The number permutations of [n] is |S,| = n!.
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Transpositions

A transposition is a permutation that swaps only two elements and
leaves the other elements fixed.

Every permutation is a composition of transpositions.

1 1 1—>1><1
2 2 = 2><2 2
3 3 3 3—3

Definition. The sign of a permutation 0 € &,
is sign(o) := det(P,) € {£1}. Then o is even if its sign is 1 and
odd if its sign is —1.

Note: 0 € G, is even, resp. odd, if it is the composition of an
even, resp. odd, number of transpositions.



Permutation matrices

1 1 0010

2 2 b _ |10 00

3 3 7100 01

A A 0/100
ag

Think of 0 € &, as a (non-attacking) rook placement on an n x n
chessboard.
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Think of this formula in terms of rook placements.
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