

# Math 201

#### ${\sf Section}\ {\sf F03}$

#### October 27, 2021

A *permutation* of a set X is a bijection  $X \rightarrow X$ .

A *permutation* of a set X is a bijection  $X \rightarrow X$ .

If  $\sigma$  and  $\tau$  are permutations of X so is  $\sigma \circ \tau$ .

A *permutation* of a set X is a bijection  $X \rightarrow X$ .

If  $\sigma$  and  $\tau$  are permutations of X so is  $\sigma \circ \tau$ .

The collection of all permutations of X along with the binary operation of  $\circ$  is called the *symmetric group* on X.

A *permutation* of a set X is a bijection  $X \rightarrow X$ .

If  $\sigma$  and  $\tau$  are permutations of X so is  $\sigma \circ \tau$ .

The collection of all permutations of X along with the binary operation of  $\circ$  is called the *symmetric group* on X.

Let  $[n] := \{1, ..., n\}$  for  $n \ge 1$ .

A *permutation* of a set X is a bijection  $X \rightarrow X$ .

If  $\sigma$  and  $\tau$  are permutations of X so is  $\sigma \circ \tau$ .

The collection of all permutations of X along with the binary operation of  $\circ$  is called the *symmetric group* on X.

Let  $[n] := \{1, ..., n\}$  for  $n \ge 1$ .

The symmetric group of degree n is the symmetric group on [n] and is denoted by  $\mathfrak{S}_n$ .

A *permutation* of a set X is a bijection  $X \rightarrow X$ .

If  $\sigma$  and  $\tau$  are permutations of X so is  $\sigma \circ \tau$ .

The collection of all permutations of X along with the binary operation of  $\circ$  is called the *symmetric group* on X.

Let  $[n] := \{1, ..., n\}$  for  $n \ge 1$ .

The symmetric group of degree n is the symmetric group on [n] and is denoted by  $\mathfrak{S}_n$ .

The number permutations of [n] is  $|\mathfrak{S}_n| = n!$ .

The *permutation matrix* associated with a permutation  $\sigma \in \mathfrak{S}_n$  is the matrix  $P_{\sigma}$  which has  $e_j$  in column  $\sigma(j)$  for j = 1, ..., n.

The *permutation matrix* associated with a permutation  $\sigma \in \mathfrak{S}_n$  is the matrix  $P_{\sigma}$  which has  $e_j$  in column  $\sigma(j)$  for j = 1, ..., n.

**Example.**  $\sigma \in \mathfrak{S}_4$  with  $\sigma(1) = 3$ ,  $\sigma(2) = 1$ ,  $\sigma(3) = 4$ , and  $\sigma(4) = 2$ :



**Note:**  $P_{\sigma}P_{\tau} = P_{\tau \circ \sigma}$ .

The *permutation matrix* associated with a permutation  $\sigma \in \mathfrak{S}_n$  is the matrix  $P_{\sigma}$  which has  $e_j$  in column  $\sigma(j)$  for j = 1, ..., n.

**Example.**  $\sigma \in \mathfrak{S}_4$  with  $\sigma(1) = 3$ ,  $\sigma(2) = 1$ ,  $\sigma(3) = 4$ , and  $\sigma(4) = 2$ :

| $1 \rightarrow 1$                       |                | 0 | 0 | 1 | 0 \ |
|-----------------------------------------|----------------|---|---|---|-----|
| 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                | 1 | 0 | 0 | 0   |
| $3 \rightarrow 3$                       | $P_{\sigma} =$ | 0 | 0 | 0 | 1   |
| 4  4                                    | l              | 0 | 1 | 0 | 0 / |
| σ                                       |                |   |   |   |     |

The *permutation matrix* associated with a permutation  $\sigma \in \mathfrak{S}_n$  is the matrix  $P_{\sigma}$  which has  $e_j$  in column  $\sigma(j)$  for j = 1, ..., n.

**Example.**  $\sigma \in \mathfrak{S}_4$  with  $\sigma(1) = 3$ ,  $\sigma(2) = 1$ ,  $\sigma(3) = 4$ , and  $\sigma(4) = 2$ :

| $1 \rightarrow 1$    | (              | ´ 0 | 0 | 1 | 0 \ |
|----------------------|----------------|-----|---|---|-----|
| 2 ∕ → 2              |                | 1   | 0 | 0 | 0   |
| $3 \rightarrow 3$    | $P_{\sigma} =$ | 0   | 0 | 0 | 1   |
| $4 \xrightarrow{} 4$ | (              | 0   | 1 | 0 | 0 / |
| σ                    |                |     |   |   |     |

**Note:**  $P_{\sigma}P_{\tau} = P_{\tau \circ \sigma}$ .

A *transposition* is a permutation that swaps only two elements and leaves the other elements fixed.

A *transposition* is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.



A *transposition* is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.



**Definition.** The sign of a permutation  $\sigma \in \mathfrak{S}_n$  is sign $(\sigma) := \det(P_{\sigma}) \in \{\pm 1\}$ .

A *transposition* is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.



**Definition.** The sign of a permutation  $\sigma \in \mathfrak{S}_n$ is  $\operatorname{sign}(\sigma) := \det(P_{\sigma}) \in \{\pm 1\}$ . Then  $\sigma$  is even if its sign is 1 and odd if its sign is -1.

A *transposition* is a permutation that swaps only two elements and leaves the other elements fixed.

Every permutation is a composition of transpositions.



**Definition.** The sign of a permutation  $\sigma \in \mathfrak{S}_n$ is  $\operatorname{sign}(\sigma) := \det(P_{\sigma}) \in \{\pm 1\}$ . Then  $\sigma$  is even if its sign is 1 and odd if its sign is -1.

**Note:**  $\sigma \in \mathfrak{S}_n$  is even, resp. odd, if it is the composition of an even, resp. odd, number of transpositions.



Think of  $\sigma \in \mathfrak{S}_n$  as a (non-attacking) rook placement on an  $n \times n$  chessboard.

**Theorem.** Let A be an  $n \times n$  matrix. Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

**Theorem.** Let A be an  $n \times n$  matrix. Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}$$

Think of this formula in terms of rook placements.

# Determinants example

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

$$1 \longrightarrow 1$$

$$2 \longrightarrow 2$$

$$3 \longrightarrow 3$$

$$\begin{pmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{pmatrix}$$

$$a_{11}a_{22}a_{33}$$

$$a_{12}a_{23}a_{31}$$

$$a_{12}a_{23}a_{31}$$

$$a_{12}a_{23}a_{31}$$

$$a_{12}a_{23}a_{31}$$

$$a_{12}a_{23}a_{31}$$

$$a_{12}a_{23}a_{31}$$

$$a_{13}a_{21}a_{32}$$

$$a_{13}a_{21}a_{32}$$

$$a_{13}a_{21}a_{32}$$

$$a_{13}a_{21}a_{32}$$

$$a_{13}a_{21}a_{32}$$

# Determinants example

$$det(A) = \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

$$\stackrel{1}{2} \xrightarrow{} 2 \\ 3 \xrightarrow{} 3 \\ \xrightarrow{$$

**Theorem.** Let A be an  $n \times n$  matrix. Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

**Theorem.** Let A be an  $n \times n$  matrix. Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

$$\blacktriangleright \det(A_{11}e_1 + A_{12}e_2 + \dots + A_{1n}e_n, \dots, A_{n1}e_1 + A_{n2}e_2 + \dots + A_{nn}e_n)$$

**Theorem.** Let A be an  $n \times n$  matrix. Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

det(A<sub>11</sub>e<sub>1</sub>+A<sub>12</sub>e<sub>2</sub>+···+A<sub>1n</sub>e<sub>n</sub>,..., A<sub>n1</sub>e<sub>1</sub>+A<sub>n2</sub>e<sub>2</sub>+···+A<sub>nn</sub>e<sub>n</sub>)
 Typical nonzero term in expansion of the above:

$$A_{1j_1}A_{2j_2}\cdots A_{nj_n} \det(e_{1j_1}, e_{2j_2}, \dots, e_{nj_n})$$

with distinct  $j_i$ .

**Theorem.** Let A be an  $n \times n$  matrix. Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

det(A<sub>11</sub>e<sub>1</sub>+A<sub>12</sub>e<sub>2</sub>+···+A<sub>1n</sub>e<sub>n</sub>,..., A<sub>n1</sub>e<sub>1</sub>+A<sub>n2</sub>e<sub>2</sub>+···+A<sub>nn</sub>e<sub>n</sub>)
 Typical nonzero term in expansion of the above:

$$A_{1j_1}A_{2j_2}\cdots A_{nj_n} \det(e_{1j_1}, e_{2j_2}, \dots, e_{nj_n})$$

with distinct  $j_i$ .

• det
$$(e_{1j_1}, e_{2j_2}, \ldots, e_{nj_n}) = \operatorname{sign}(\sigma) = \pm 1$$
 where  $\sigma(i) = j_i$ 

**Theorem.** Let A be an  $n \times n$  matrix. Then

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sign}(\sigma) A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)}.$$

det(A<sub>11</sub>e<sub>1</sub>+A<sub>12</sub>e<sub>2</sub>+···+A<sub>1n</sub>e<sub>n</sub>,..., A<sub>n1</sub>e<sub>1</sub>+A<sub>n2</sub>e<sub>2</sub>+···+A<sub>nn</sub>e<sub>n</sub>)
 Typical nonzero term in expansion of the above:

$$A_{1j_1}A_{2j_2}\cdots A_{nj_n} \det(e_{1j_1}, e_{2j_2}, \dots, e_{nj_n})$$

with distinct  $j_i$ .

• det
$$(e_{1j_1}, e_{2j_2}, \dots, e_{nj_n}) = \operatorname{sign}(\sigma) = \pm 1$$
 where  $\sigma(i) = j_i$