

# Math 201

#### ${\sf Section}\ {\sf F03}$

#### October 29, 2021

For  $A \in M_{n \times n}(F)$ , let  $A^{ij}$  denote the  $(n-1) \times (n-1)$  matrix formed by removing row *i* and column *j* from *A*.

For  $A \in M_{n \times n}(F)$ , let  $A^{ij}$  denote the  $(n-1) \times (n-1)$  matrix formed by removing row *i* and column *j* from *A*.

Define  $d: M_{n \times n}(F) \to F$  recursively by

$$d(A) := \sum_{j=1}^{n} (-1)^{1+j} A_{1j} d(A^{1j})$$
(1)

for n > 1 and d(A) = a if A = [a] is a  $1 \times 1$  matrix.

For  $A \in M_{n \times n}(F)$ , let  $A^{ij}$  denote the  $(n-1) \times (n-1)$  matrix formed by removing row *i* and column *j* from *A*.

Define  $d: M_{n \times n}(F) \to F$  recursively by

$$d(A) := \sum_{j=1}^{n} (-1)^{1+j} A_{1j} d(A^{1j})$$
(1)

for n > 1 and d(A) = a if A = [a] is a  $1 \times 1$  matrix.

**Exercise.** The function d is multilinear, alternating, and normalized.

Since d is multilinear, alternating, and normalized, its value at any matrix A can be computed by row reducing A (keeping track of swaps and scalings).

Since d is multilinear, alternating, and normalized, its value at any matrix A can be computed by row reducing A (keeping track of swaps and scalings).

**Consequence:** the value does not depend on the choice of the sequence of row operations used to reduce *A*.

Since d is multilinear, alternating, and normalized, its value at any matrix A can be computed by row reducing A (keeping track of swaps and scalings).

**Consequence:** the value does not depend on the choice of the sequence of row operations used to reduce *A*.

**Uniqueness.** The value of any multilinear, alternating, and normalized function of the rows of a matrix is completely determined (via any choice for row reduction). So there is only one multilinear, alternating, normalized function.

Let  $A \in M_{n \times n}(F)$ , and fix any  $k \in \{1, \ldots, n\}$ . Then

$$\det(A) = \sum_{j=1}^n (-1)^{k+j} A_{kj} \det(A^{kj}).$$

Let  $A \in M_{n \times n}(F)$ , and fix a subset of k rows  $r_{i_1}, \ldots, r_{i_k}$  of A where  $1 \le k \le n$ .

Let  $A \in M_{n \times n}(F)$ , and fix a subset of k rows  $r_{i_1}, \ldots, r_{i_k}$  of A where  $1 \le k \le n$ . Let  $I = \{i_1, \ldots, i_k\}$  be the indices of these rows.

Let  $A \in M_{n \times n}(F)$ , and fix a subset of k rows  $r_{i_1}, \ldots, r_{i_k}$  of A where  $1 \le k \le n$ . Let  $I = \{i_1, \ldots, i_k\}$  be the indices of these rows. For any subset  $J \subseteq \{j_1, \ldots, j_k\}$ , define  $|J| := j_1 + \cdots + j_k$ ,

Let  $A \in M_{n \times n}(F)$ , and fix a subset of k rows  $r_{i_1}, \ldots, r_{i_k}$  of A where  $1 \le k \le n$ . Let  $I = \{i_1, \ldots, i_k\}$  be the indices of these rows. For any subset  $J \subseteq \{j_1, \ldots, j_k\}$ , define  $|J| := j_1 + \cdots + j_k$ , and define

 $A^{IJ}$  = the  $k \times k$  submatrix of A formed by the intersection of rows indexed by I and the columns indexed by J

 $\overline{A}^{IJ}$  = the  $(n - k) \times (n - k)$  submatrix of A formed by the intersection of rows indexed by  $\{1, \ldots, n\} \setminus I$  and the columns indexed by  $\{1, \ldots, n\} \setminus J$ .

Let  $A \in M_{n \times n}(F)$ , and fix a subset of k rows  $r_{i_1}, \ldots, r_{i_k}$  of A where  $1 \le k \le n$ . Let  $I = \{i_1, \ldots, i_k\}$  be the indices of these rows. For any subset  $J \subseteq \{j_1, \ldots, j_k\}$ , define  $|J| := j_1 + \cdots + j_k$ , and define

 $A^{IJ}$  = the  $k \times k$  submatrix of A formed by the intersection of rows indexed by I and the columns indexed by J

 $\overline{A}^{IJ}$  = the  $(n - k) \times (n - k)$  submatrix of A formed by the intersection of rows indexed by  $\{1, \ldots, n\} \setminus I$  and the columns indexed by  $\{1, \ldots, n\} \setminus J$ .

Then

$$\det(A) = \sum_{J} (-1)^{|I|+|J|} \det(A^{IJ}) \det(\bar{A}^{IJ})$$

where the sum is over all k-element subsets J of  $\{1, \ldots, n\}$ .