Math 201

Section F03

October 29, 2021

Existence and uniqueness of the determinant

For $A \in M_{n \times n}(F)$, let $A^{i j}$ denote the $(n-1) \times(n-1)$ matrix formed by removing row i and column j from A.

Existence and uniqueness of the determinant

For $A \in M_{n \times n}(F)$, let $A^{i j}$ denote the $(n-1) \times(n-1)$ matrix formed by removing row i and column j from A.

Define $d: M_{n \times n}(F) \rightarrow F$ recursively by

$$
\begin{equation*}
d(A):=\sum_{j=1}^{n}(-1)^{1+j} A_{1 j} d\left(A^{1 j}\right) \tag{1}
\end{equation*}
$$

for $n>1$ and $d(A)=a$ if $A=[a]$ is a 1×1 matrix.

Existence and uniqueness of the determinant

For $A \in M_{n \times n}(F)$, let $A^{i j}$ denote the $(n-1) \times(n-1)$ matrix formed by removing row i and column j from A.

Define $d: M_{n \times n}(F) \rightarrow F$ recursively by

$$
\begin{equation*}
d(A):=\sum_{j=1}^{n}(-1)^{1+j} A_{1 j} d\left(A^{1 j}\right) \tag{1}
\end{equation*}
$$

for $n>1$ and $d(A)=a$ if $A=[a]$ is a 1×1 matrix.
Exercise. The function d is multilinear, alternating, and normalized.

Existence and uniqueness of the determinant

Since d is multilinear, alternating, and normalized, its value at any matrix A can be computed by row reducing A (keeping track of swaps and scalings).

Existence and uniqueness of the determinant

Since d is multilinear, alternating, and normalized, its value at any matrix A can be computed by row reducing A (keeping track of swaps and scalings).
Consequence: the value does not depend on the choice of the sequence of row operations used to reduce A.

Existence and uniqueness of the determinant

Since d is multilinear, alternating, and normalized, its value at any matrix A can be computed by row reducing A (keeping track of swaps and scalings).
Consequence: the value does not depend on the choice of the sequence of row operations used to reduce A.

Uniqueness. The value of any multilinear, alternating, and normalized function of the rows of a matrix is completely determined (via any choice for row reduction). So there is only one multilinear, alternating, normalized function.

Laplace expansion

Let $A \in M_{n \times n}(F)$, and fix any $k \in\{1, \ldots, n\}$. Then

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{k+j} A_{k j} \operatorname{det}\left(A^{k j}\right)
$$

Generalized Laplace expansion

Let $A \in M_{n \times n}(F)$, and fix a subset of k rows $r_{i_{1}}, \ldots, r_{i_{k}}$ of A where $1 \leq k \leq n$.

Generalized Laplace expansion

Let $A \in M_{n \times n}(F)$, and fix a subset of k rows $r_{i_{1}}, \ldots, r_{i_{k}}$ of A where $1 \leq k \leq n$. Let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ be the indices of these rows.

Generalized Laplace expansion

Let $A \in M_{n \times n}(F)$, and fix a subset of k rows $r_{i_{1}}, \ldots, r_{i_{k}}$ of A where $1 \leq k \leq n$. Let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ be the indices of these rows. For any subset $J \subseteq\left\{j_{1}, \ldots, j_{k}\right\}$, define $|J|:=j_{1}+\cdots+j_{k}$,

Generalized Laplace expansion

Let $A \in M_{n \times n}(F)$, and fix a subset of k rows $r_{i_{1}}, \ldots, r_{i_{k}}$ of A where $1 \leq k \leq n$. Let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ be the indices of these rows. For any subset $J \subseteq\left\{j_{1}, \ldots, j_{k}\right\}$, define $|J|:=j_{1}+\cdots+j_{k}$, and define
$A^{I J}=$ the $k \times k$ submatrix of A formed by the intersection of rows indexed by I and the columns indexed by J
$\bar{A}^{\prime J}=$ the $(n-k) \times(n-k)$ submatrix of A formed by the intersection of rows indexed by $\{1, \ldots, n\} \backslash I$ and the columns indexed by $\{1, \ldots, n\} \backslash J$.

Generalized Laplace expansion

Let $A \in M_{n \times n}(F)$, and fix a subset of k rows $r_{i_{1}}, \ldots, r_{i_{k}}$ of A where $1 \leq k \leq n$. Let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ be the indices of these rows. For any subset $J \subseteq\left\{j_{1}, \ldots, j_{k}\right\}$, define $|J|:=j_{1}+\cdots+j_{k}$, and define
$A^{I J}=$ the $k \times k$ submatrix of A formed by the intersection of rows indexed by I and the columns indexed by J
$\bar{A}^{\prime J}=$ the $(n-k) \times(n-k)$ submatrix of A formed by the intersection of rows indexed by $\{1, \ldots, n\} \backslash I$ and the columns indexed by $\{1, \ldots, n\} \backslash J$.

Then

$$
\operatorname{det}(A)=\sum_{J}(-1)^{|I|+|J|} \operatorname{det}\left(A^{I J}\right) \operatorname{det}\left(\bar{A}^{I J}\right)
$$

where the sum is over all k-element subsets J of $\{1, \ldots, n\}$.

