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Existence and uniqueness of the determinant

For A ∈ Mn×n(F ), let Aij denote the (n − 1)× (n − 1) matrix
formed by removing row i and column j from A.

Define d : Mn×n(F )→ F recursively by

d(A) :=
n∑

j=1
(−1)1+jA1j d(A1j) (1)

for n > 1 and d(A) = a if A = [a] is a 1× 1 matrix.

Exercise. The function d is multilinear, alternating, and
normalized.
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Existence and uniqueness of the determinant

Since d is multilinear, alternating, and normalized, its value at any
matrix A can be computed by row reducing A (keeping track of
swaps and scalings).

Consequence: the value does not depend on the choice of the
sequence of row operations used to reduce A.

Uniqueness. The value of any multilinear, alternating, and
normalized function of the rows of a matrix is completely
determined (via any choice for row reduction). So there is only one
multilinear, alternating, normalized function.
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Laplace expansion

Let A ∈ Mn×n(F ), and fix any k ∈ {1, . . . , n}. Then

det(A) =
n∑

j=1
(−1)k+jAkj det(Akj).



Generalized Laplace expansion

Let A ∈ Mn×n(F ), and fix a subset of k rows ri1 , . . . , rik of A where
1 ≤ k ≤ n.

Let I = {i1, . . . , ik} be the indices of these rows. For
any subset J ⊆ {j1, . . . , jk}, define |J | := j1 + · · ·+ jk , and define

AIJ = the k × k submatrix of A formed by the intersection of rows
indexed by I and the columns indexed by J

ĀIJ = the (n − k)× (n − k) submatrix of A formed by the
intersection of rows indexed by {1, . . . , n} \ I and the columns
indexed by {1, . . . , n} \ J .

Then
det(A) =

∑
J

(−1)|I|+|J| det(AIJ) det(ĀIJ)

where the sum is over all k-element subsets J of {1, . . . , n}.



Generalized Laplace expansion

Let A ∈ Mn×n(F ), and fix a subset of k rows ri1 , . . . , rik of A where
1 ≤ k ≤ n. Let I = {i1, . . . , ik} be the indices of these rows.

For
any subset J ⊆ {j1, . . . , jk}, define |J | := j1 + · · ·+ jk , and define

AIJ = the k × k submatrix of A formed by the intersection of rows
indexed by I and the columns indexed by J
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where the sum is over all k-element subsets J of {1, . . . , n}.



Generalized Laplace expansion

Let A ∈ Mn×n(F ), and fix a subset of k rows ri1 , . . . , rik of A where
1 ≤ k ≤ n. Let I = {i1, . . . , ik} be the indices of these rows. For
any subset J ⊆ {j1, . . . , jk}, define |J | := j1 + · · ·+ jk , and define

AIJ = the k × k submatrix of A formed by the intersection of rows
indexed by I and the columns indexed by J
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