Math 201

Section F03

October 13, 2021

Review + some nice notation

$$
\begin{aligned}
f: \mathbb{R}[x]_{\leq 2} & \rightarrow \mathbb{R}[x]_{\leq 3} \\
p & \mapsto x p+2 p^{\prime}
\end{aligned}
$$

Find the matrix representing f with respect to the ordered bases $\alpha=\left\langle 1, x, x^{2}\right\rangle$ for $\mathbb{R}[x]_{\leq 2}$ and $\beta=\left\langle 1, x, x^{2}, x^{3}\right\rangle$.

Review + some nice notation

$$
\begin{aligned}
f: \mathbb{R}[x]_{\leq 2} & \rightarrow \mathbb{R}[x]_{\leq 3} \\
p & \mapsto x p+2 p^{\prime}
\end{aligned}
$$

Find the matrix representing f with respect to the ordered bases $\alpha=\left\langle 1, x, x^{2}\right\rangle$ for $\mathbb{R}[x]_{\leq 2}$ and $\beta=\left\langle 1, x, x^{2}, x^{3}\right\rangle$. Compute:

$$
f(1)=x, \quad f(x)=x^{2}+2, \quad f\left(x^{2}\right)=x^{3}+4 x
$$

Review + some nice notation

$$
\begin{aligned}
f: \mathbb{R}[x]_{\leq 2} & \rightarrow \mathbb{R}[x]_{\leq 3} \\
p & \mapsto x p+2 p^{\prime}
\end{aligned}
$$

Find the matrix representing f with respect to the ordered bases $\alpha=\left\langle 1, x, x^{2}\right\rangle$ for $\mathbb{R}[x]_{\leq 2}$ and $\beta=\left\langle 1, x, x^{2}, x^{3}\right\rangle$. Compute:

$$
f(1)=x, \quad f(x)=x^{2}+2, \quad f\left(x^{2}\right)=x^{3}+4 x .
$$

The matrix is then

$$
\begin{gathered}
\\
\\
\\
1 \\
1 \\
x \\
x \\
x^{2} \\
x^{3}
\end{gathered}\left(\begin{array}{ccc}
0 & f(x) & f\left(x^{2}\right) \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Change of basis

$$
\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle \text { ordered basis for } V
$$

Change of basis

$\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ ordered basis for V coordinate mapping:

$$
\begin{aligned}
& \phi_{\alpha}: V \xrightarrow{\sim} F^{n} \\
& v=a_{1} v_{1}+\cdots+a_{n} v_{n} \mapsto\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

Change of basis

$\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ ordered basis for V coordinate mapping:

$$
\begin{aligned}
& \phi_{\alpha}: V \xrightarrow{\sim} F^{n} \\
& v=a_{1} v_{1}+\cdots+a_{n} v_{n} \mapsto\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

If $V=F^{n}$, then $\phi_{\alpha}: F^{n} \rightarrow F^{n}$ and $v_{j} \in F^{n}$ for all j.

Change of basis

$\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ ordered basis for V coordinate mapping:

$$
\begin{aligned}
& \phi_{\alpha}: V \xrightarrow{\sim} F^{n} \\
& v=a_{1} v_{1}+\cdots+a_{n} v_{n} \mapsto\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

If $V=F^{n}$, then $\phi_{\alpha}: F^{n} \rightarrow F^{n}$ and $v_{j} \in F^{n}$ for all j.
Note: In any case, $\phi_{\alpha}\left(v_{j}\right)=e_{j}$.

Matrix representing coordinate mapping

$\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ ordered basis for F^{n} coordinate mapping: $\phi_{\alpha}: F^{n} \rightarrow F^{n}$

Matrix representing coordinate mapping

$\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ ordered basis for F^{n}
coordinate mapping: $\phi_{\alpha}: F^{n} \rightarrow F^{n}$
Matrix representing ϕ_{α} :

$$
\begin{aligned}
\phi_{\alpha}: F^{n} & \xrightarrow{M} F^{n} \\
v & \mapsto M v
\end{aligned}
$$

Matrix representing coordinate mapping

$\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ ordered basis for F^{n}
coordinate mapping: $\phi_{\alpha}: F^{n} \rightarrow F^{n}$
Matrix representing ϕ_{α} :

$$
\begin{aligned}
\phi_{\alpha}: & F^{n} \xrightarrow{M} F^{n} \\
& v \mapsto M v
\end{aligned}
$$

j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$,

Matrix representing coordinate mapping

$\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ ordered basis for F^{n}
coordinate mapping: $\phi_{\alpha}: F^{n} \rightarrow F^{n}$
Matrix representing ϕ_{α} :

$$
\begin{aligned}
\phi_{\alpha}: & F^{n} \xrightarrow{M} F^{n} \\
& v \mapsto M v
\end{aligned}
$$

j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$, and $\phi_{\alpha}(v)=M v$ for all $v \in F^{n}$.

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$.

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)
Proof. For each $j=1, \ldots, n$, we have

$$
P e_{j}=v_{j}
$$

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)
Proof. For each $j=1, \ldots, n$, we have

$$
P e_{j}=v_{j} \quad \Rightarrow \quad P^{-1} P e_{j}=P^{-1} v_{j}
$$

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)
Proof. For each $j=1, \ldots, n$, we have

$$
P e_{j}=v_{j} \quad \Rightarrow \quad P^{-1} P e_{j}=P^{-1} v_{j} \quad \Rightarrow \quad e_{j}=P^{-1} v_{j} .
$$

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)
Proof. For each $j=1, \ldots, n$, we have

$$
P e_{j}=v_{j} \quad \Rightarrow \quad P^{-1} P e_{j}=P^{-1} v_{j} \quad \Rightarrow \quad e_{j}=P^{-1} v_{j} .
$$

Thus, $P^{-1}\left(v_{j}\right)=e_{j}=\phi_{\alpha}\left(v_{j}\right)$ for all v in the basis α.

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)
Proof. For each $j=1, \ldots, n$, we have

$$
P e_{j}=v_{j} \quad \Rightarrow \quad P^{-1} P e_{j}=P^{-1} v_{j} \quad \Rightarrow \quad e_{j}=P^{-1} v_{j} .
$$

Thus, $P^{-1}\left(v_{j}\right)=e_{j}=\phi_{\alpha}\left(v_{j}\right)$ for all v in the basis α. Therefore, $P^{-1} v=\phi_{\alpha}(v)$ for all $v \in F_{n}$.

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)
Proof. For each $j=1, \ldots, n$, we have

$$
P e_{j}=v_{j} \quad \Rightarrow \quad P^{-1} P e_{j}=P^{-1} v_{j} \quad \Rightarrow \quad e_{j}=P^{-1} v_{j} .
$$

Thus, $P^{-1}\left(v_{j}\right)=e_{j}=\phi_{\alpha}\left(v_{j}\right)$ for all v in the basis α. Therefore, $P^{-1} v=\phi_{\alpha}(v)$ for all $v \in F_{n}$. Then, the j-th column of P^{-1} is

$$
P^{-1} e_{j}=\phi_{\alpha}\left(e_{j}\right)=j \text {-th column of } M
$$

for all j.

Matrix representing coordinate mapping

$\phi_{\alpha}: F^{n} \rightarrow F^{n} \quad$ and $\quad \phi_{\alpha}(v)=M v$
j-th column of M is $\phi_{\alpha}\left(e_{j}\right)$ for $j=1, \ldots, n$.
Claim: Let P be the matrix whose columns are v_{1}, \ldots, v_{n}, in order. Then $M=P^{-1}$. (Why does P have an inverse?)
Proof. For each $j=1, \ldots, n$, we have

$$
P e_{j}=v_{j} \quad \Rightarrow \quad P^{-1} P e_{j}=P^{-1} v_{j} \quad \Rightarrow \quad e_{j}=P^{-1} v_{j} .
$$

Thus, $P^{-1}\left(v_{j}\right)=e_{j}=\phi_{\alpha}\left(v_{j}\right)$ for all v in the basis α. Therefore, $P^{-1} v=\phi_{\alpha}(v)$ for all $v \in F_{n}$. Then, the j-th column of P^{-1} is

$$
P^{-1} e_{j}=\phi_{\alpha}\left(e_{j}\right)=j \text {-th column of } M
$$

for all j. So $M=P^{-1}$.

Change of basis

$$
A \in M_{m \times n}(F)
$$

Change of basis

$$
A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_{A}: F^{n} \rightarrow F^{m}
$$

Change of basis

$A \in M_{m \times n}(F) \rightsquigarrow L_{A}: F^{n} \rightarrow F^{m}$
bases: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$

Change of basis

$A \in M_{m \times n}(F) \rightsquigarrow L_{A}: F^{n} \rightarrow F^{m}$
bases: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$

$$
\begin{aligned}
& F^{n} \xrightarrow{L_{A}} F^{m} \\
&\left.\phi_{\alpha}\right|^{2} \\
& F^{n} \xrightarrow{\left[L_{A}\right]_{\alpha}^{\beta}} \\
&{ }^{2} \downarrow_{\beta} \\
& F^{m}
\end{aligned}
$$

Change of basis

$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_{A}: F^{n} \rightarrow F^{m}$
bases: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$

$$
\begin{array}{rlrl}
F^{n} \xrightarrow{L_{A}} F^{m} & F^{n} \xrightarrow{A} F^{m} \\
\phi_{\alpha} \downarrow_{2}^{2} & 2 \downarrow_{\beta} & = & P^{-1} \downarrow_{2} \\
F^{n} \xrightarrow{\left[L_{A}\right]_{\alpha}^{\beta}} F^{m} & & F^{n} \xrightarrow{B} Q^{-1} & F^{m} .
\end{array}
$$

$$
B=\left[L_{A}\right]_{\alpha}^{\beta}
$$

Change of basis

$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_{A}: F^{n} \rightarrow F^{m}$
bases: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$

$$
\begin{array}{rlrl}
F^{n} \xrightarrow{L_{A}} F^{m} & F^{n} \xrightarrow{A} F^{m} \\
\phi_{\alpha} \downarrow_{2}^{2} & 2 \downarrow_{\beta} & = & P^{-1} \downarrow_{2} \\
F^{n} \xrightarrow{\left[L_{A}\right]_{\alpha}^{\beta}} F^{m} & & F^{n} \xrightarrow{B} Q^{-1} & F^{m} .
\end{array}
$$

$$
B=\left[L_{A}\right]_{\alpha}^{\beta}=Q^{-1} B P
$$

Change of basis

$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_{A}: F^{n} \rightarrow F^{m}$
bases: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$

$$
\begin{array}{rlrl}
F^{n} \xrightarrow{L_{A}} F^{m} & & F^{n} \xrightarrow{A} F^{m} \\
\phi_{\alpha} \downarrow_{2} & 2 \downarrow_{\phi_{\beta}} & = & P^{-1} \downarrow_{2} \\
F^{n} \xrightarrow{\left[L_{A}\right]_{\alpha}^{\beta}} F^{m} & & F^{n} \xrightarrow{B} Q^{-1} & F^{m} .
\end{array}
$$

$$
B=\left[L_{A}\right]_{\alpha}^{\beta}=Q^{-1} B P
$$

The mapping L_{B} is what L_{A} becomes after changing bases to α for the domain and β for the codomain.

Change of basis

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_{A}: F^{n} \rightarrow F^{m}$ determined by A, i.e., $L(v)=A v$ for each $v \in F^{n}$.

Change of basis

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_{A}: F^{n} \rightarrow F^{m}$ determined by A, i.e., $L(v)=A v$ for each $v \in F^{n}$.
Let $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ be ordered bases for F^{n} and F^{m}, respectively.

Change of basis

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_{A}: F^{n} \rightarrow F^{m}$ determined by A, i.e., $L(v)=A v$ for each $v \in F^{n}$.

Let $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ be ordered bases for F^{n} and F^{m}, respectively.

Let P be the $n \times n$ matrix with j-th column v_{j} for $j=1, \ldots, n$, and let Q be the $m \times m$ matrix with j-th column w_{j} for $j=1, \ldots, m$.

Change of basis

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_{A}: F^{n} \rightarrow F^{m}$ determined by A, i.e., $L(v)=A v$ for each $v \in F^{n}$.

Let $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\beta=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ be ordered bases for F^{n} and F^{m}, respectively.

Let P be the $n \times n$ matrix with j-th column v_{j} for $j=1, \ldots, n$, and let Q be the $m \times m$ matrix with j-th column w_{j} for $j=1, \ldots, m$.

Then the matrix B representing L_{A} with respect to the bases α and β is $B=Q^{-1} A P$:

$$
\begin{array}{cc}
F^{n} \xrightarrow{A} F^{m} \\
P^{-1} \downarrow_{2} & \\
F^{n} \xrightarrow{2} \xrightarrow{B} Q^{-1} & F^{m} .
\end{array}
$$

Example

$$
\begin{aligned}
f: \mathbb{Q}^{3} & \rightarrow \mathbb{Q}^{2} \\
(x, y, z) & \mapsto(x+3 y+2 z, 2 y+z),
\end{aligned}
$$

Example

$$
\begin{aligned}
f: \mathbb{Q}^{3} & \rightarrow \mathbb{Q}^{2} \\
(x, y, z) & \mapsto(x+3 y+2 z, 2 y+z),
\end{aligned}
$$

Bases:

$$
\begin{array}{ll}
\mathbb{Q}^{3}: & \alpha=\langle(1,0,0),(1,1,0),(1,1,1)\rangle \\
\mathbb{Q}^{2}: & \beta=\langle(0,1),(1,1)\rangle .
\end{array}
$$

Example

$$
\begin{aligned}
f: \mathbb{Q}^{3} & \rightarrow \mathbb{Q}^{2} \\
(x, y, z) & \mapsto(x+3 y+2 z, 2 y+z),
\end{aligned}
$$

Bases:

$$
\begin{aligned}
& \mathbb{Q}^{3}: \alpha=\langle(1,0,0),(1,1,0),(1,1,1)\rangle \\
& \mathbb{Q}^{2}: \beta=\langle(0,1),(1,1)\rangle . \\
& A=\left(\begin{array}{lll}
1 & 3 & 2 \\
0 & 2 & 1
\end{array}\right) \quad P=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
\end{aligned}
$$

Example

$$
\begin{aligned}
f: \mathbb{Q}^{3} & \rightarrow \mathbb{Q}^{2} \\
(x, y, z) & \mapsto(x+3 y+2 z, 2 y+z),
\end{aligned}
$$

Bases:

$$
\begin{gathered}
\mathbb{Q}^{3}: \quad \alpha=\langle(1,0,0),(1,1,0),(1,1,1)\rangle \\
\mathbb{Q}^{2}: \quad \beta=\langle(0,1),(1,1)\rangle . \\
A=\left(\begin{array}{lll}
1 & 3 & 2 \\
0 & 2 & 1
\end{array}\right) \quad P=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) . \\
B=Q^{-1} A P=\left(\begin{array}{rr}
-1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 2 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{rrr}
-1 & -2 & -3 \\
1 & 4 & 6
\end{array}\right) .
\end{gathered}
$$

Change of basis for self-mapping

$$
L_{A}: F^{n} \rightarrow F^{n}
$$

basis for both domain and codomain: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$

Change of basis for self-mapping

$$
L_{A}: F^{n} \rightarrow F^{n}
$$

basis for both domain and codomain: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$

\[

\]

Change of basis for self-mapping

$$
L_{A}: F^{n} \rightarrow F^{n}
$$

basis for both domain and codomain: $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$

$$
\begin{array}{rl}
F^{n} & \xrightarrow{A} F^{n} \\
P^{-1} \mid 2 & \\
\downarrow^{2} \mid P^{-1} \\
F^{n} & B \\
B & =F^{m} \\
& P^{-1} A P
\end{array}
$$

Conjugation

Definition Let $A, B \in M_{n \times n}(F)$. Then A is similar to B, denoted $A \sim B$ if there exists an invertible matrix $P \in M_{n \times n}(F)$ such that $B=P^{-1} A P$.

Conjugation

Definition Let $A, B \in M_{n \times n}(F)$. Then A is similar to B, denoted $A \sim B$ if there exists an invertible matrix $P \in M_{n \times n}(F)$ such that $B=P^{-1} A P$.

Proposition. Similarity is an equivalence relation on $M_{m \times n}(F)$.

Example

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle
$$

Example

$$
\begin{gathered}
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle \\
P=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right) \\
P^{-1}=\left(\begin{array}{rrr}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & -1 \\
-1 & 2 & -1
\end{array}\right)
\end{gathered}
$$

Example

$$
\begin{gathered}
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle \\
P=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right) \\
P^{-1}=\left(\begin{array}{rrr}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & -1 \\
-1 & 2 & -1
\end{array}\right) \\
B=P^{-1} A P=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
\end{gathered}
$$

Example

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right), \quad A^{3}=\left(\begin{array}{lll}
2 & 3 & 3 \\
3 & 2 & 3 \\
3 & 3 & 2
\end{array}\right), \\
& A^{4}=\left(\begin{array}{lll}
6 & 5 & 5 \\
5 & 6 & 5 \\
5 & 5 & 6
\end{array}\right), \quad A^{5}=\left(\begin{array}{lll}
10 & 11 & 11 \\
11 & 10 & 11 \\
11 & 11 & 10
\end{array}\right) \\
& A^{6}=\left(\begin{array}{lll}
22 & 21 & 21 \\
21 & 22 & 21 \\
21 & 21 & 22
\end{array}\right), \quad A^{7}=\left(\begin{array}{lll}
42 & 43 & 43 \\
43 & 42 & 43 \\
43 & 43 & 42
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& A^{k}=P B^{k} P^{-1} \\
& =\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)^{k}\left(\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & -1 \\
-1 & 2 & -1
\end{array}\right)\right) \\
& =\frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{rrr}
2^{k} & 0 & 0 \\
0 & (-1)^{k} & 0 \\
0 & 0 & (-1)^{k}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & -1 \\
-1 & 2 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{ccc}
2^{k}+2(-1)^{k} & 2^{k}-(-1)^{k} & 2^{k}-(-1)^{k} \\
2^{k}-(-1)^{k} & 2^{k}+2(-1)^{k} & 2^{k}-(-1)^{k} \\
2^{k}-(-1)^{k} & 2^{k}-(-1)^{k} & 2^{k}+2(-1)^{k}
\end{array}\right)
\end{aligned}
$$

