

Math 201

${\sf Section}\ {\sf F03}$

October 13, 2021

Review + some nice notation

$$f: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 3}$$

 $p \mapsto xp + 2p'$

Find the matrix representing f with respect to the ordered bases $\alpha = \langle 1, x, x^2 \rangle$ for $\mathbb{R}[x]_{\leq 2}$ and $\beta = \langle 1, x, x^2, x^3 \rangle$.

Review + some nice notation

$$f: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 3}$$

 $p \mapsto xp + 2p'$

Find the matrix representing f with respect to the ordered bases $\alpha = \langle 1, x, x^2 \rangle$ for $\mathbb{R}[x]_{\leq 2}$ and $\beta = \langle 1, x, x^2, x^3 \rangle$. Compute:

$$f(1) = x$$
, $f(x) = x^2 + 2$, $f(x^2) = x^3 + 4x$.

Review + some nice notation

$$f: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 3}$$

 $p \mapsto xp + 2p'$

Find the matrix representing f with respect to the ordered bases $\alpha = \langle 1, x, x^2 \rangle$ for $\mathbb{R}[x]_{\leq 2}$ and $\beta = \langle 1, x, x^2, x^3 \rangle$. Compute:

$$f(1) = x$$
, $f(x) = x^2 + 2$, $f(x^2) = x^3 + 4x$.

The matrix is then

$$f(1) \quad f(x) \quad f(x^2)$$

$$\frac{1}{x} \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 4 \\ 0 & 1 & 0 \\ x^3 & 0 & 0 & 1 \end{pmatrix}.$$

$$\alpha = \langle v_1, \dots, v_n \rangle$$
 ordered basis for V

 $\alpha = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle \text{ ordered basis for } V$

coordinate mapping:

$$\phi_{\alpha} \colon V \xrightarrow{\sim} F^{n}$$
$$v = a_{1}v_{1} + \dots + a_{n}v_{n} \mapsto (a_{1}, \dots, a_{n}).$$

 $\alpha = \langle v_1, \dots, v_n \rangle$ ordered basis for V

coordinate mapping:

$$\phi_{\alpha} \colon V \xrightarrow{\sim} F^{n}$$
$$v = a_{1}v_{1} + \dots + a_{n}v_{n} \mapsto (a_{1}, \dots, a_{n}).$$

If $V = F^n$, then $\phi_{\alpha} \colon F^n \to F^n$ and $v_j \in F^n$ for all j.

 $\alpha = \langle v_1, \dots, v_n \rangle$ ordered basis for V

coordinate mapping:

$$\phi_{\alpha} \colon V \xrightarrow{\sim} F^{n}$$
$$v = a_{1}v_{1} + \dots + a_{n}v_{n} \mapsto (a_{1}, \dots, a_{n}).$$

If $V = F^n$, then $\phi_{\alpha} \colon F^n \to F^n$ and $v_j \in F^n$ for all j.

Note: In any case, $\phi_{\alpha}(v_j) = e_j$.

 $\alpha = \langle v_1, \dots, v_n \rangle$ ordered basis for F^n coordinate mapping: $\phi_{\alpha} \colon F^n \to F^n$

 $\alpha = \langle v_1, \dots, v_n \rangle$ ordered basis for F^n coordinate mapping: $\phi_{\alpha} \colon F^n \to F^n$ Matrix representing ϕ_{α} :

$$\phi_{\alpha} \colon F^{n} \xrightarrow{M} F^{n}$$
$$v \mapsto Mv$$

 $\alpha = \langle v_1, \dots, v_n \rangle$ ordered basis for F^n coordinate mapping: $\phi_{\alpha} \colon F^n \to F^n$ Matrix representing ϕ_{α} :

$$\phi_{\alpha} \colon F^n \xrightarrow{M} F^n$$
$$v \mapsto Mv$$

j-th column of *M* is $\phi_{\alpha}(e_j)$,

 $\alpha = \langle v_1, \dots, v_n \rangle$ ordered basis for F^n coordinate mapping: $\phi_{\alpha} \colon F^n \to F^n$ Matrix representing ϕ_{α} :

$$\phi_{\alpha} \colon F^{n} \xrightarrow{M} F^{n}$$
$$v \mapsto Mv$$

j-th column of *M* is $\phi_{\alpha}(e_j)$, and $\phi_{\alpha}(v) = Mv$ for all $v \in F^n$.

 $\phi_{\alpha} \colon F^n \to F^n \text{ and } \phi_{\alpha}(\mathbf{v}) = M\mathbf{v}$ *j*-th column of M is $\phi_{\alpha}(e_j)$ for $j = 1, \dots, n$.

 $\phi_{\alpha} \colon F^{n} \to F^{n}$ and $\phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_{j})$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$.

 $\phi_{\alpha} \colon F^{n} \to F^{n}$ and $\phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_{j})$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?)

 $\phi_{\alpha} \colon F^n \to F^n \text{ and } \phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_j)$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?) *Proof.* For each $j = 1, \ldots, n$, we have

$$Pe_j = v_j$$

 $\phi_{\alpha} \colon F^{n} \to F^{n}$ and $\phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_{j})$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?) *Proof.* For each $j = 1, \ldots, n$, we have

$$Pe_j = v_j \quad \Rightarrow \quad P^{-1}Pe_j = P^{-1}v_j$$

 $\phi_{\alpha} \colon F^{n} \to F^{n}$ and $\phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_{j})$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?) *Proof.* For each $j = 1, \ldots, n$, we have

$$Pe_j = v_j \quad \Rightarrow \quad P^{-1}Pe_j = P^{-1}v_j \quad \Rightarrow \quad e_j = P^{-1}v_j.$$

 $\phi_{\alpha} \colon F^n \to F^n \text{ and } \phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_j)$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?) *Proof.* For each $j = 1, \ldots, n$, we have

$$Pe_j = v_j \quad \Rightarrow \quad P^{-1}Pe_j = P^{-1}v_j \quad \Rightarrow \quad e_j = P^{-1}v_j.$$

Thus, $P^{-1}(v_j) = e_j = \phi_{\alpha}(v_j)$ for all v in the basis α .

 $\phi_{\alpha} \colon F^{n} \to F^{n}$ and $\phi_{\alpha}(v) = Mv$ *j*-th column of M is $\phi_{\alpha}(e_{j})$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?) *Proof.* For each $j = 1, \ldots, n$, we have

$$Pe_j = v_j \quad \Rightarrow \quad P^{-1}Pe_j = P^{-1}v_j \quad \Rightarrow \quad e_j = P^{-1}v_j.$$

Thus, $P^{-1}(v_j) = e_j = \phi_{\alpha}(v_j)$ for all v in the basis α . Therefore, $P^{-1}v = \phi_{\alpha}(v)$ for all $v \in F_n$.

 $\phi_{\alpha} \colon F^n \to F^n \text{ and } \phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_j)$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?) *Proof.* For each $j = 1, \ldots, n$, we have

$$Pe_j = v_j \quad \Rightarrow \quad P^{-1}Pe_j = P^{-1}v_j \quad \Rightarrow \quad e_j = P^{-1}v_j.$$

Thus, $P^{-1}(v_j) = e_j = \phi_{\alpha}(v_j)$ for all v in the basis α . Therefore, $P^{-1}v = \phi_{\alpha}(v)$ for all $v \in F_n$. Then, the *j*-th column of P^{-1} is

$$P^{-1}e_j = \phi_{lpha}(e_j) = j$$
-th column of M

for all j.

 $\phi_{\alpha} \colon F^n \to F^n \text{ and } \phi_{\alpha}(v) = Mv$ *j*-th column of *M* is $\phi_{\alpha}(e_j)$ for j = 1, ..., n.

Claim: Let *P* be the matrix whose columns are v_1, \ldots, v_n , in order. Then $M = P^{-1}$. (Why does *P* have an inverse?) *Proof.* For each $j = 1, \ldots, n$, we have

$$Pe_j = v_j \quad \Rightarrow \quad P^{-1}Pe_j = P^{-1}v_j \quad \Rightarrow \quad e_j = P^{-1}v_j.$$

Thus, $P^{-1}(v_j) = e_j = \phi_{\alpha}(v_j)$ for all v in the basis α . Therefore, $P^{-1}v = \phi_{\alpha}(v)$ for all $v \in F_n$. Then, the *j*-th column of P^{-1} is

$${\it P}^{-1}{\it e}_j=\phi_lpha({\it e}_j)=j$$
-th column of M

for all j. So $M = P^{-1}$.

 $A \in M_{m \times n}(F)$

$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_A \colon F^n \to F^m$

$$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_A \colon F^n \to F^m$$

bases: $\alpha = \langle v_1, \dots, v_n \rangle, \quad \beta = \langle w_1, \dots, w_m \rangle$

$$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_A \colon F^n \to F^m$$

bases: $\alpha = \langle v_1, \dots, v_n \rangle, \quad \beta = \langle w_1, \dots, w_m \rangle$

$$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_A \colon F^n \to F^m$$

bases: $\alpha = \langle v_1, \dots, v_n \rangle, \quad \beta = \langle w_1, \dots, w_m \rangle$

$$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_A \colon F^n \to F^m$$

bases: $\alpha = \langle v_1, \dots, v_n \rangle, \quad \beta = \langle w_1, \dots, w_m \rangle$

$$A \in M_{m \times n}(F) \quad \rightsquigarrow \quad L_A \colon F^n \to F^m$$

bases: $\alpha = \langle v_1, \dots, v_n \rangle, \quad \beta = \langle w_1, \dots, w_m \rangle$

The mapping L_B is what L_A becomes after changing bases to α for the domain and β for the codomain.

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_A : F^n \to F^m$ determined by A, i.e., L(v) = Av for each $v \in F^n$.

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_A \colon F^n \to F^m$ determined by A, i.e., L(v) = Av for each $v \in F^n$.

Let $\alpha = \langle v_1, \ldots, v_n \rangle$ and $\beta = \langle w_1, \ldots, w_m \rangle$ be ordered bases for F^n and F^m , respectively.

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_A \colon F^n \to F^m$ determined by A, i.e., L(v) = Av for each $v \in F^n$.

Let $\alpha = \langle v_1, \ldots, v_n \rangle$ and $\beta = \langle w_1, \ldots, w_m \rangle$ be ordered bases for F^n and F^m , respectively.

Let P be the $n \times n$ matrix with j-th column v_j for j = 1, ..., n, and let Q be the $m \times m$ matrix with j-th column w_j for j = 1, ..., m.

Proposition.

Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_A : F^n \to F^m$ determined by A, i.e., L(v) = Av for each $v \in F^n$.

Let $\alpha = \langle v_1, \ldots, v_n \rangle$ and $\beta = \langle w_1, \ldots, w_m \rangle$ be ordered bases for F^n and F^m , respectively.

Let P be the $n \times n$ matrix with j-th column v_j for j = 1, ..., n, and let Q be the $m \times m$ matrix with j-th column w_j for j = 1, ..., m.

Then the matrix *B* representing L_A with respect to the bases α and β is $B = Q^{-1}AP$:

$$f: \mathbb{Q}^3 \to \mathbb{Q}^2$$

 $(x, y, z) \mapsto (x + 3y + 2z, 2y + z),$

$$f: \mathbb{Q}^3 \to \mathbb{Q}^2$$

 $(x, y, z) \mapsto (x + 3y + 2z, 2y + z),$

Bases:

$$egin{aligned} \mathbb{Q}^3 : & lpha = \langle (1,0,0), (1,1,0), (1,1,1)
angle \ \mathbb{Q}^2 : & eta = \langle (0,1), (1,1)
angle. \end{aligned}$$

$$f: \mathbb{Q}^3 \to \mathbb{Q}^2$$

 $(x, y, z) \mapsto (x + 3y + 2z, 2y + z),$

Bases:

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

$$f: \mathbb{Q}^3 \to \mathbb{Q}^2$$

 $(x, y, z) \mapsto (x + 3y + 2z, 2y + z),$

Bases:

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$
$$B = Q^{-1}AP = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -2 & -3 \\ 1 & 4 & 6 \end{pmatrix}.$$

Change of basis for self-mapping

$$L_A \colon F^n \to F^n$$

basis for both domain and codomain: $\alpha = \langle v_1, \ldots, v_n \rangle$

Change of basis for self-mapping

$$L_A \colon F^n \to F^n$$

basis for both domain and codomain: $\alpha = \langle v_1, \ldots, v_n \rangle$

Change of basis for self-mapping

$$L_A \colon F^n \to F^n$$

basis for both domain and codomain: $\alpha = \langle v_1, \ldots, v_n \rangle$

Conjugation

Definition Let $A, B \in M_{n \times n}(F)$. Then A is *similar* to B, denoted $A \sim B$ if there exists an invertible matrix $P \in M_{n \times n}(F)$ such that $B = P^{-1}AP$.

Conjugation

Definition Let $A, B \in M_{n \times n}(F)$. Then A is similar to B, denoted $A \sim B$ if there exists an invertible matrix $P \in M_{n \times n}(F)$ such that $B = P^{-1}AP$.

Proposition. Similarity is an equivalence relation on $M_{m \times n}(F)$.

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \alpha = \langle (1, 1, 1), (1, 0, -1), (0, 1, -1) \rangle$$

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \alpha = \langle (1, 1, 1), (1, 0, -1), (0, 1, -1) \rangle$$
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$
$$P^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \alpha = \langle (1, 1, 1), (1, 0, -1), (0, 1, -1) \rangle$$
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$
$$P^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}.$$
$$B = P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

$$\begin{aligned} A^{k} &= PB^{k}P^{-1} \\ &= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^{k} \begin{pmatrix} \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2^{k} & 0 & 0 \\ 0 & (-1)^{k} & 0 \\ 0 & 0 & (-1)^{k} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 2^{k} + 2(-1)^{k} & 2^{k} - (-1)^{k} & 2^{k} - (-1)^{k} \\ 2^{k} - (-1)^{k} & 2^{k} + 2(-1)^{k} & 2^{k} - (-1)^{k} \\ 2^{k} - (-1)^{k} & 2^{k} - (-1)^{k} & 2^{k} + 2(-1)^{k} \end{pmatrix} \end{aligned}$$