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Review

Definition. If A is an m × p matrix and B is a p × n matrix,
then AB is the m × n matrix with (i , j)-th entry

(AB)ij :=
p∑

k=1
AikBkj .

Proposition. Let A be an m × n matrix, B an n × r matrix, both
over a field F , and λ ∈ F .

1. λ(AB) = (λA)B = A(λB).
2. A(BC) = (AB)C for all r × s matrices C .
3. A(B + C) = AB + AC for all n × r matrices C .
4. (C + D)A = CA + DA for all r ×m matrices C and D.
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Diagonal matrices

Definition. An m× n matrix A is diagonal if Aij = 0 for all i 6= j .

If m = n, we write diag(a1, . . . , an) for the diagonal matrix A with
Aii = ai for all i .

Example.

diag(1, 4, 0, 6) =


1 0 0 0
0 4 0 0
0 0 0 0
0 0 0 6

 .
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Identity matrix

Definition. The n × n identity matrix is

In := diag(1, . . . , 1).

We have AIn = A and InB = B whenever these products make
sense. (

1 2 3
4 5 6

) 1 0 0
0 1 0
0 0 1

 =
(

1 2 3
4 5 6

)

and  1 0 0
0 1 0
0 0 1


 1 2

3 4
5 6

 =

 1 2
3 4
5 6

 .
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Inverses
If AB = In, then A is a left inverse for B and B is a right inverse
for A.

Example.

A =
(

1 1 1
0 1 1

)
and B =

 1 −1
0 0
0 1

 .

AB =
(

1 1 1
0 1 1

) 1 −1
0 0
0 1

 =
(

1 0
0 1

)
= I2.

But,

BA =

 1 −1
0 0
0 1

( 1 1 1
0 1 1

)
=

 1 0 0
0 0 0
0 1 1

 6= I3.
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Matrix inverses

Theorem. Let A and B be n × n matrices. The following are
equivalent:
(a) AB = In.
(b) BA = In.

If AB = In, we say A and B are invertible and write A−1 = B
and B−1 = A.

The following are equivalent:
(i) A is invertible.
(ii) rank(A) = n.
(iii) The reduced echelon form of A is In.
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Matrix inversion algorithm

Problem: determine whether the following real matrix has an
inverse, and if it does, calculate it:

A =

 0 3 −1
1 0 1
1 −1 0

 .

Equivalently, see if there are real numbers a, . . . , i such that 0 3 −1
1 0 1
1 −1 0


 a b c

d e f
g h i

 =

 1 0 0
0 1 0
0 0 1

 .



Matrix inversion algorithm

Problem: determine whether the following real matrix has an
inverse, and if it does, calculate it:

A =

 0 3 −1
1 0 1
1 −1 0

 .

Equivalently, see if there are real numbers a, . . . , i such that 0 3 −1
1 0 1
1 −1 0


 a b c

d e f
g h i

 =

 1 0 0
0 1 0
0 0 1

 .



Matrix inversion algorithm 0 3 −1
1 0 1
1 −1 0


 a b c

d e f
g h i

 =

 1 0 0
0 1 0
0 0 1

 .

Equivalent to three calculations: 0 3 −1
1 0 1
1 −1 0


 a

d
g

 =

 1
0
0


 0 3 −1

1 0 1
1 −1 0


 b

e
h

 =

 0
1
0


 0 3 −1

1 0 1
1 −1 0


 c

f
i

 =

 0
0
1





Matrix inversion algorithm 0 3 −1
1 0 1
1 −1 0


 a b c

d e f
g h i

 =

 1 0 0
0 1 0
0 0 1

 .
Equivalent to three calculations: 0 3 −1

1 0 1
1 −1 0


 a

d
g

 =

 1
0
0


 0 3 −1

1 0 1
1 −1 0


 b

e
h

 =

 0
1
0


 0 3 −1

1 0 1
1 −1 0


 c

f
i

 =

 0
0
1





Matrix inversion algorithm

Corresponding augmented matrices: 0 3 −1 1
1 0 1 0
1 −1 0 0

 ,
 0 3 −1 0

1 0 1 1
1 −1 0 0

 ,
 0 3 −1 0

1 0 1 0
1 −1 0 1

 .

Solve simultaneously: 0 3 −1 1 0 0
1 0 1 0 1 0
1 −1 0 0 0 1

  
 1 0 0 1/4 1/4 3/4

0 1 0 1/4 1/4 −1/4
0 0 1 −1/4 3/4 −3/4

 .
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Matrix inversion algorithm

Input: n × n matrix A

Row reduce: (A | In) 
(
Ã | B

)
, where Ã is the reduced row

echelon form of A.

Case I: if Ã = In (equivalently, rank(A) = n), then AB = In.
Case II: if Ã 6= In (equivalently, rank(A) < n), then there is no B such

that AB = In.

In particular, A has a right inverse if and only if rank(A) = n.
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Matrix inversion algorithm

Suppose Ã = In:
(A | In) (In | B) . (1)

What happens if we want to find C ∈ Mn×n such that BC = In?

(B | In) 
(
B̃ |?

)
.

Reverse row operations in (1) to get

(B | In) (In | A) .

Therefore, if A,B ∈ Mn×n and AB = In, then BA = In.
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