Math 201

Section F03

October 11, 2021

Review

Definition. If A is an $m \times p$ matrix and B is a $p \times n$ matrix, then $A B$ is the $m \times n$ matrix with (i, j)-th entry

$$
(A B)_{i j}:=\sum_{k=1}^{p} A_{i k} B_{k j} .
$$

Review

Definition. If A is an $m \times p$ matrix and B is a $p \times n$ matrix, then $A B$ is the $m \times n$ matrix with (i, j)-th entry

$$
(A B)_{i j}:=\sum_{k=1}^{p} A_{i k} B_{k j}
$$

Proposition. Let A be an $m \times n$ matrix, B an $n \times r$ matrix, both over a field F, and $\lambda \in F$.

1. $\lambda(A B)=(\lambda A) B=A(\lambda B)$.
2. $A(B C)=(A B) C$ for all $r \times s$ matrices C.
3. $A(B+C)=A B+A C$ for all $n \times r$ matrices C.
4. $(C+D) A=C A+D A$ for all $r \times m$ matrices C and D.

Diagonal matrices

Definition. An $m \times n$ matrix A is diagonal if $A_{i j}=0$ for all $i \neq j$.

Diagonal matrices

Definition. An $m \times n$ matrix A is diagonal if $A_{i j}=0$ for all $i \neq j$. If $m=n$, we write $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ for the diagonal matrix A with $A_{i i}=a_{i}$ for all i.

Diagonal matrices

Definition. An $m \times n$ matrix A is diagonal if $A_{i j}=0$ for all $i \neq j$.
If $m=n$, we write $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ for the diagonal matrix A with $A_{i i}=a_{i}$ for all i.

Example.

$$
\operatorname{diag}(1,4,0,6)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 6
\end{array}\right)
$$

Identity matrix

Definition. The $n \times n$ identity matrix is

$$
I_{n}:=\operatorname{diag}(1, \ldots, 1)
$$

Identity matrix

Definition. The $n \times n$ identity matrix is

$$
I_{n}:=\operatorname{diag}(1, \ldots, 1)
$$

We have $A I_{n}=A$ and $I_{n} B=B$ whenever these products make sense.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

and

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Inverses

If $A B=I_{n}$, then A is a left inverse for B and B is a right inverse for A.

Inverses

If $A B=I_{n}$, then A is a left inverse for B and B is a right inverse for A.

Example.

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

Inverses

If $A B=I_{n}$, then A is a left inverse for B and B is a right inverse for A.

Example.

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right) . \\
A B=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2} .
\end{gathered}
$$

Inverses

If $A B=I_{n}$, then A is a left inverse for B and B is a right inverse for A.

Example.

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{rr}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right) . \\
A B=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2} .
\end{gathered}
$$

But,

$$
B A=\left(\begin{array}{rr}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \neq I_{3} .
$$

Matrix inverses

Theorem. Let A and B be $n \times n$ matrices. The following are equivalent:
(a) $A B=I_{n}$.
(b) $B A=I_{n}$.

Matrix inverses

Theorem. Let A and B be $n \times n$ matrices. The following are equivalent:
(a) $A B=I_{n}$.
(b) $B A=I_{n}$.

If $A B=I_{n}$, we say A and B are invertible and write $A^{-1}=B$ and $B^{-1}=A$.

Matrix inverses

Theorem. Let A and B be $n \times n$ matrices. The following are equivalent:
(a) $A B=I_{n}$.
(b) $B A=I_{n}$.

If $A B=I_{n}$, we say A and B are invertible and write $A^{-1}=B$ and $B^{-1}=A$.

The following are equivalent:
(i) A is invertible.
(ii) $\operatorname{rank}(A)=n$.
(iii) The reduced echelon form of A is I_{n}.

Matrix inversion algorithm

Problem: determine whether the following real matrix has an inverse, and if it does, calculate it:

$$
A=\left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

Matrix inversion algorithm

Problem: determine whether the following real matrix has an inverse, and if it does, calculate it:

$$
A=\left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

Equivalently, see if there are real numbers a, \ldots, i such that

$$
\left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Matrix inversion algorithm

$$
\left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Matrix inversion algorithm

$$
\left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Equivalent to three calculations:

$$
\begin{aligned}
& \left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
d \\
g
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
b \\
e \\
h
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
c \\
f \\
i
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Matrix inversion algorithm

Corresponding augmented matrices:

$$
\left(\begin{array}{rrr|r}
0 & 3 & -1 & 1 \\
1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{rrr|r}
0 & 3 & -1 & 0 \\
1 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{rrr|r}
0 & 3 & -1 & 0 \\
1 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) .
$$

Matrix inversion algorithm

Corresponding augmented matrices:

$$
\left(\begin{array}{rrr|r}
0 & 3 & -1 & 1 \\
1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{rrr|r}
0 & 3 & -1 & 0 \\
1 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{rrr|r}
0 & 3 & -1 & 0 \\
1 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) .
$$

Solve simultaneously:

$$
\left(\begin{array}{rrr|rrr}
0 & 3 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Matrix inversion algorithm

Corresponding augmented matrices:

$$
\left(\begin{array}{rrr|r}
0 & 3 & -1 & 1 \\
1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{rrr|r}
0 & 3 & -1 & 0 \\
1 & 0 & 1 & 1 \\
1 & -1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{rrr|r}
0 & 3 & -1 & 0 \\
1 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) .
$$

Solve simultaneously:

$$
\left(\begin{array}{rrr|rrr}
0 & 3 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{lll|ccc}
1 & 0 & 0 & 1 / 4 & 1 / 4 & 3 / 4 \\
0 & 1 & 0 & 1 / 4 & 1 / 4 & -1 / 4 \\
0 & 0 & 1 & -1 / 4 & 3 / 4 & -3 / 4
\end{array}\right) .
$$

Matrix inversion algorithm

$$
\left(\begin{array}{rrr|rrr}
0 & 3 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Matrix inversion algorithm

$$
\left(\begin{array}{rrr|rrr}
0 & 3 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 4 & 1 / 4 & 3 / 4 \\
0 & 1 & 0 & 1 / 4 & 1 / 4 & -1 / 4 \\
0 & 0 & 1 & -1 / 4 & 3 / 4 & -3 / 4
\end{array}\right) .
$$

Matrix inversion algorithm

$$
\left(\begin{array}{rrr|rrr}
0 & 3 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 4 & 1 / 4 & 3 / 4 \\
0 & 1 & 0 & 1 / 4 & 1 / 4 & -1 / 4 \\
0 & 0 & 1 & -1 / 4 & 3 / 4 & -3 / 4
\end{array}\right) .
$$

Back to the original systems of equations, we get:

$$
\left(\begin{array}{l}
a \\
d \\
g
\end{array}\right)=\left(\begin{array}{r}
1 / 4 \\
1 / 4 \\
-1 / 4
\end{array}\right), \quad\left(\begin{array}{l}
b \\
e \\
h
\end{array}\right)=\left(\begin{array}{l}
1 / 4 \\
1 / 4 \\
3 / 4
\end{array}\right), \quad\left(\begin{array}{l}
c \\
d \\
i
\end{array}\right)=\left(\begin{array}{r}
3 / 4 \\
-1 / 4 \\
-3 / 4
\end{array}\right) .
$$

Matrix inversion algorithm

$$
\left(\begin{array}{rrr|rrr}
0 & 3 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 4 & 1 / 4 & 3 / 4 \\
0 & 1 & 0 & 1 / 4 & 1 / 4 & -1 / 4 \\
0 & 0 & 1 & -1 / 4 & 3 / 4 & -3 / 4
\end{array}\right) .
$$

Back to the original systems of equations, we get:

$$
\left(\begin{array}{l}
a \\
d \\
g
\end{array}\right)=\left(\begin{array}{r}
1 / 4 \\
1 / 4 \\
-1 / 4
\end{array}\right), \quad\left(\begin{array}{l}
b \\
e \\
h
\end{array}\right)=\left(\begin{array}{l}
1 / 4 \\
1 / 4 \\
3 / 4
\end{array}\right), \quad\left(\begin{array}{l}
c \\
d \\
i
\end{array}\right)=\left(\begin{array}{r}
3 / 4 \\
-1 / 4 \\
-3 / 4
\end{array}\right) .
$$

Therefore,

$$
\left(\begin{array}{rrr}
0 & 3 & -1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 / 4 & 1 / 4 & 3 / 4 \\
1 / 4 & 1 / 4 & -1 / 4 \\
-1 / 4 & 3 / 4 & -3 / 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Matrix inversion algorithm

Input: $n \times n$ matrix A

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Case I: if $\widetilde{A}=I_{n}$ (equivalently, $\operatorname{rank}(A)=n$), then $A B=I_{n}$.

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Case I: if $\widetilde{A}=I_{n}$ (equivalently, $\operatorname{rank}(A)=n$), then $A B=I_{n}$.
Case II: if $\widetilde{A} \neq I_{n}$ (equivalently, $\operatorname{rank}(A)<n$), then there is no B such that $A B=I_{n}$.

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Case I: if $\widetilde{A}=I_{n}$ (equivalently, $\operatorname{rank}(A)=n$), then $A B=I_{n}$.
Case II: if $\widetilde{A} \neq I_{n}$ (equivalently, $\operatorname{rank}(A)<n$), then there is no B such that $A B=I_{n}$.

In particular, A has a right inverse if and only if $\operatorname{rank}(A)=n$.

Matrix inversion algorithm

Suppose $\widetilde{A}=I_{n}$:

$$
\begin{equation*}
\left(A \mid I_{n}\right) \rightsquigarrow\left(I_{n} \mid B\right) . \tag{1}
\end{equation*}
$$

Matrix inversion algorithm

Suppose $\widetilde{A}=I_{n}$:

$$
\begin{equation*}
\left(A \mid I_{n}\right) \rightsquigarrow\left(I_{n} \mid B\right) . \tag{1}
\end{equation*}
$$

What happens if we want to find $C \in M_{n \times n}$ such that $B C=I_{n}$?

Matrix inversion algorithm

Suppose $\widetilde{A}=I_{n}$:

$$
\begin{equation*}
\left(A \mid I_{n}\right) \rightsquigarrow\left(I_{n} \mid B\right) . \tag{1}
\end{equation*}
$$

What happens if we want to find $C \in M_{n \times n}$ such that $B C=I_{n}$?

$$
\left(B \mid I_{n}\right) \rightsquigarrow(\widetilde{B} \mid ?) .
$$

Matrix inversion algorithm

Suppose $\widetilde{A}=I_{n}$:

$$
\begin{equation*}
\left(A \mid I_{n}\right) \rightsquigarrow\left(I_{n} \mid B\right) . \tag{1}
\end{equation*}
$$

What happens if we want to find $C \in M_{n \times n}$ such that $B C=I_{n}$?

$$
\left(B \mid I_{n}\right) \rightsquigarrow(\widetilde{B} \mid ?) .
$$

Reverse row operations in (1) to get

$$
\left(B \mid I_{n}\right) \rightsquigarrow\left(I_{n} \mid A\right) .
$$

Matrix inversion algorithm

Suppose $\widetilde{A}=I_{n}$:

$$
\begin{equation*}
\left(A \mid I_{n}\right) \rightsquigarrow\left(I_{n} \mid B\right) . \tag{1}
\end{equation*}
$$

What happens if we want to find $C \in M_{n \times n}$ such that $B C=I_{n}$?

$$
\left(B \mid I_{n}\right) \rightsquigarrow(\widetilde{B} \mid ?) .
$$

Reverse row operations in (1) to get

$$
\left(B \mid I_{n}\right) \rightsquigarrow\left(I_{n} \mid A\right) .
$$

Therefore, if $A, B \in M_{n \times n}$ and $A B=I_{n}$, then $B A=I_{n}$.

Matrix inversion algorithm

Input: $n \times n$ matrix A

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Case I: if $\widetilde{A}=I_{n}$ (equivalently, $\operatorname{rank}(A)=n$), then $A B=B A=I_{n}$.

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Case I: if $\widetilde{A}=I_{n}$ (equivalently, $\operatorname{rank}(A)=n$), then $A B=B A=I_{n}$.
Case II: if $\widetilde{A} \neq I_{n}$ (equivalently, $\operatorname{rank}(A)<n$), then there is no B such that $A B=I_{n}$.

Matrix inversion algorithm

Input: $n \times n$ matrix A
Row reduce: $\left(A \mid I_{n}\right) \rightsquigarrow(\widetilde{A} \mid B)$, where \tilde{A} is the reduced row echelon form of A.

Case I: if $\widetilde{A}=I_{n}$ (equivalently, $\operatorname{rank}(A)=n$), then $A B=B A=I_{n}$.
Case II: if $\widetilde{A} \neq I_{n}$ (equivalently, $\operatorname{rank}(A)<n$), then there is no B such that $A B=I_{n}$.

In particular, A has an inverse if and only if $\operatorname{rank}(A)=n$.

