

Math 201

${\sf Section}\ {\sf F03}$

October 11, 2021

Review

Definition. If A is an $m \times p$ matrix and B is a $p \times n$ matrix, then AB is the $m \times n$ matrix with (i, j)-th entry

$$(AB)_{ij} := \sum_{k=1}^{p} A_{ik} B_{kj}.$$

Review

Definition. If A is an $m \times p$ matrix and B is a $p \times n$ matrix, then AB is the $m \times n$ matrix with (i, j)-th entry

$$(AB)_{ij} := \sum_{k=1}^{p} A_{ik} B_{kj}.$$

Proposition. Let A be an $m \times n$ matrix, B an $n \times r$ matrix, both over a field F, and $\lambda \in F$.

1.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$
.
2. $A(BC) = (AB)C$ for all $r \times s$ matrices C.
3. $A(B+C) = AB + AC$ for all $n \times r$ matrices C.
4. $(C+D)A = CA + DA$ for all $r \times m$ matrices C and D.

Definition. An $m \times n$ matrix A is *diagonal* if $A_{ij} = 0$ for all $i \neq j$.

Definition. An $m \times n$ matrix A is *diagonal* if $A_{ij} = 0$ for all $i \neq j$. If m = n, we write diag (a_1, \ldots, a_n) for the diagonal matrix A with $A_{ii} = a_i$ for all i. **Definition.** An $m \times n$ matrix A is *diagonal* if $A_{ij} = 0$ for all $i \neq j$. If m = n, we write diag (a_1, \ldots, a_n) for the diagonal matrix A with $A_{ii} = a_i$ for all i.

Example.

$$\operatorname{diag}(1,4,0,6) = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right)$$

Identity matrix

Definition. The $n \times n$ identity matrix is

$$I_n := \operatorname{diag}(1,\ldots,1).$$

Identity matrix

Definition. The $n \times n$ identity matrix is

$$I_n := \operatorname{diag}(1,\ldots,1).$$

We have $AI_n = A$ and $I_nB = B$ whenever these products make sense.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}.$$

and

If $AB = I_n$, then A is a *left inverse* for B and B is a *right inverse* for A.

If $AB = I_n$, then A is a *left inverse* for B and B is a *right inverse* for A.

Example.

$$A = \left(egin{array}{ccc} 1 & 1 & 1 \ 0 & 1 & 1 \end{array}
ight) \quad ext{and} \quad B = \left(egin{array}{ccc} 1 & -1 \ 0 & 0 \ 0 & 1 \end{array}
ight).$$

If $AB = I_n$, then A is a *left inverse* for B and B is a *right inverse* for A.

Example.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}.$$
$$AB = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$$

If $AB = I_n$, then A is a *left inverse* for B and B is a *right inverse* for A.

Example.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}.$$
$$AB = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = l_2.$$

But,

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \neq I_3.$$

Matrix inverses

Theorem. Let *A* and *B* be $n \times n$ matrices. The following are equivalent:

(a) $AB = I_n$. (b) $BA = I_n$.

Matrix inverses

Theorem. Let A and B be $n \times n$ matrices. The following are equivalent:

(a) AB = I_n.
(b) BA = I_n.
If AB = I_n, we say A and B are *invertible* and write A⁻¹ = B and B⁻¹ = A.

Matrix inverses

Theorem. Let A and B be $n \times n$ matrices. The following are equivalent:

(a) AB = I_n.
(b) BA = I_n.
If AB = I_n, we say A and B are *invertible* and write A⁻¹ = B and B⁻¹ = A.

The following are equivalent:

(i) A is invertible.

(ii) $\operatorname{rank}(A) = n$.

(iii) The reduced echelon form of A is I_n .

Problem: determine whether the following real matrix has an inverse, and if it does, calculate it:

$$A = \left(\begin{array}{rrr} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right).$$

Problem: determine whether the following real matrix has an inverse, and if it does, calculate it:

$$A = \left(\begin{array}{rrrr} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right).$$

Equivalently, see if there are real numbers a, \ldots, i such that

$$\left(\begin{array}{rrrr} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right) \left(\begin{array}{rrrr} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

$$\left(\begin{array}{rrrr} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right) \left(\begin{array}{rrrr} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

$$\left(\begin{array}{rrrr} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right) \left(\begin{array}{rrrr} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Equivalent to three calculations:

$$\begin{pmatrix} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} a \\ d \\ g \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} b \\ e \\ h \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} c \\ f \\ i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Corresponding augmented matrices:

$$\begin{pmatrix} 0 & 3 & -1 & | & 1 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & -1 & | & 0 \\ 1 & 0 & 1 & | & 1 \\ 1 & -1 & 0 & | & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & -1 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & 0 & | & 1 \end{pmatrix}$$

•

Corresponding augmented matrices:

$$\begin{pmatrix} 0 & 3 & -1 & | & 1 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & -1 & | & 0 \\ 1 & 0 & 1 & | & 1 \\ 1 & -1 & 0 & | & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & -1 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & 0 & | & 1 \end{pmatrix}$$

.

Solve simultaneously:

Corresponding augmented matrices:

$$\begin{pmatrix} 0 & 3 & -1 & | & 1 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & -1 & | & 0 \\ 1 & 0 & 1 & | & 1 \\ 1 & -1 & 0 & | & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & -1 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & 0 & | & 1 \end{pmatrix}$$

.

Solve simultaneously:

$$\begin{pmatrix} 0 & 3 & -1 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & -1 & 0 & | & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & | & 1/4 & 1/4 & 3/4 \\ 0 & 1 & 0 & | & 1/4 & 1/4 & -1/4 \\ 0 & 0 & 1 & | & -1/4 & 3/4 & -3/4 \end{pmatrix}$$

•

$$\left(egin{array}{cccc|c} 0 & 3 & -1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 & 1 \ 1 & -1 & 0 & 0 & 0 & 1 \end{array}
ight)
ightarrow \left(egin{array}{cccc|c} 1 & 0 & 0 & | & 1/4 & 1/4 & 3/4 \ 0 & 1 & 0 & | & 1/4 & 1/4 & -1/4 \ 0 & 0 & 1 & | & -1/4 & 3/4 & -3/4 \end{array}
ight)$$

.

.

Back to the original systems of equations, we get:

$$\begin{pmatrix} a \\ d \\ g \end{pmatrix} = \begin{pmatrix} 1/4 \\ 1/4 \\ -1/4 \end{pmatrix}, \quad \begin{pmatrix} b \\ e \\ h \end{pmatrix} = \begin{pmatrix} 1/4 \\ 1/4 \\ 3/4 \end{pmatrix}, \quad \begin{pmatrix} c \\ d \\ i \end{pmatrix} = \begin{pmatrix} 3/4 \\ -1/4 \\ -3/4 \end{pmatrix}$$

.

٠

Back to the original systems of equations, we get:

$$\begin{pmatrix} a \\ d \\ g \end{pmatrix} = \begin{pmatrix} 1/4 \\ 1/4 \\ -1/4 \end{pmatrix}, \quad \begin{pmatrix} b \\ e \\ h \end{pmatrix} = \begin{pmatrix} 1/4 \\ 1/4 \\ 3/4 \end{pmatrix}, \quad \begin{pmatrix} c \\ d \\ i \end{pmatrix} = \begin{pmatrix} 3/4 \\ -1/4 \\ -3/4 \end{pmatrix}$$

Therefore,

$$\begin{pmatrix} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1/4 & 1/4 & 3/4 \\ 1/4 & 1/4 & -1/4 \\ -1/4 & 3/4 & -3/4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Input: $n \times n$ matrix A

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Case I: if $\tilde{A} = I_n$ (equivalently, rank(A) = n), then $AB = I_n$.

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Case I: if $\tilde{A} = I_n$ (equivalently, $\operatorname{rank}(A) = n$), then $AB = I_n$. Case II: if $\tilde{A} \neq I_n$ (equivalently, $\operatorname{rank}(A) < n$), then there is no B such that $AB = I_n$.

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Case I: if $\tilde{A} = I_n$ (equivalently, rank(A) = n), then $AB = I_n$. Case II: if $\tilde{A} \neq I_n$ (equivalently, rank(A) < n), then there is no B such that $AB = I_n$.

In particular, A has a right inverse if and only if rank(A) = n.

Suppose
$$\widetilde{A} = I_n$$
:
 $(A \mid I_n) \rightsquigarrow (I_n \mid B).$ (1)

Suppose
$$\widetilde{A} = I_n$$
:
 $(A \mid I_n) \rightsquigarrow (I_n \mid B).$ (1)

What happens if we want to find $C \in M_{n \times n}$ such that $BC = I_n$?

Suppose
$$\widetilde{A} = I_n$$
:
 $(A \mid I_n) \rightsquigarrow (I_n \mid B).$ (1)

What happens if we want to find $C \in M_{n \times n}$ such that $BC = I_n$?

$$(B \mid I_n) \rightsquigarrow (\widetilde{B} \mid ?).$$

Suppose
$$\widetilde{A} = I_n$$
:
 $(A \mid I_n) \rightsquigarrow (I_n \mid B).$ (1)

What happens if we want to find $C \in M_{n \times n}$ such that $BC = I_n$?

$$(B \mid I_n) \rightsquigarrow (\widetilde{B} \mid ?).$$

Reverse row operations in (1) to get

 $(B \mid I_n) \rightsquigarrow (I_n \mid A).$

Suppose
$$\widetilde{A} = I_n$$
:
 $(A \mid I_n) \rightsquigarrow (I_n \mid B).$ (1)

What happens if we want to find $C \in M_{n \times n}$ such that $BC = I_n$?

$$(B \mid I_n) \rightsquigarrow (\widetilde{B} \mid ?).$$

Reverse row operations in (1) to get

 $(B \mid I_n) \rightsquigarrow (I_n \mid A).$

Therefore, if $A, B \in M_{n \times n}$ and $AB = I_n$, then $BA = I_n$.

Input: $n \times n$ matrix A

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Case I: if $\tilde{A} = I_n$ (equivalently, rank(A) = n), then $AB = BA = I_n$.

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Case I: if $\tilde{A} = I_n$ (equivalently, $\operatorname{rank}(A) = n$), then $AB = BA = I_n$. Case II: if $\tilde{A} \neq I_n$ (equivalently, $\operatorname{rank}(A) < n$), then there is no B such that $AB = I_n$.

Input: $n \times n$ matrix A

Row reduce: $(A \mid I_n) \rightsquigarrow (\widetilde{A} \mid B)$, where \widetilde{A} is the reduced row echelon form of A.

Case I: if $\tilde{A} = I_n$ (equivalently, rank(A) = n), then $AB = BA = I_n$. Case II: if $\tilde{A} \neq I_n$ (equivalently, rank(A) < n), then there is no B such that $AB = I_n$.

In particular, A has an inverse if and only if rank(A) = n.