Math 201

Section F03

October 15, 2021

Review of change of basis stuff

$f: V \rightarrow W$

Review of change of basis stuff

$$
f: V \rightarrow W \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{n}\right\rangle
$$

Review of change of basis stuff

$$
f: V \rightarrow W \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{n}\right\rangle
$$

$$
\begin{gathered}
V \xrightarrow{f} W \\
\phi_{\alpha} \downarrow^{2} \xrightarrow{2} \downarrow_{\beta} \\
F^{n} \xrightarrow{[f]_{\alpha}^{\beta}} F^{m}
\end{gathered}
$$

Review of change of basis stuff

$$
f: V \rightarrow W \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{n}\right\rangle
$$

\[

\]

$$
\begin{gathered}
\phi_{\alpha}: V \xrightarrow{\sim} F^{n} \\
v=a_{1} v_{1}+\cdots+a_{n} v_{n} \mapsto\left(a_{1}, \ldots, a_{n}\right)
\end{gathered}
$$

$$
\phi_{\beta}: W \xrightarrow{\sim} F^{m}
$$

$$
w=b_{1} w_{1}+\cdots+b_{n} w_{m} \mapsto\left(b_{1}, \ldots, b_{m}\right)
$$

Review of change of basis stuff

$L_{A}: F^{n} \rightarrow F^{m}, \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{n}\right\rangle$

Review of change of basis stuff

$L_{A}: F^{n} \rightarrow F^{m}, \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{n}\right\rangle$

\[

\]

Review of change of basis stuff

$$
L_{A}: F^{n} \rightarrow F^{m}, \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{n}\right\rangle
$$

\[

\]

$$
P=\left(\begin{array}{ccc}
\mid & \ldots & \mid \\
v_{1} & \ddots & v_{n} \\
\mid & \ldots & \mid
\end{array}\right) \quad Q=\left(\begin{array}{ccc}
\mid & \ldots & \mid \\
w_{1} & \ddots & w_{m} \\
\mid & \ldots & \mid
\end{array}\right)
$$

Review of change of basis stuff

$$
\begin{aligned}
& L_{A}: F^{n} \rightarrow F^{m}, \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle, \quad \beta=\left\langle w_{1}, \ldots, w_{n}\right\rangle \\
& F^{n} \xrightarrow{A} F^{m} \\
& P^{-1} \downarrow 2 \quad \quad \downarrow \downarrow Q^{-1} \\
& F^{n} \xrightarrow{B} F^{m} \\
& P=\left(\begin{array}{ccc}
\mid & \ldots & \mid \\
v_{1} & \ddots & v_{n} \\
\mid & \ldots & \mid
\end{array}\right) \quad Q=\left(\begin{array}{ccc}
\mid & \ldots & \mid \\
w_{1} & \ddots & w_{m} \\
\mid & \ldots & \mid
\end{array}\right)
\end{aligned}
$$

$$
B=Q^{-1} A P
$$

Review of change of basis stuff

$$
L_{A}: F^{n} \rightarrow F^{n}, \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

Review of change of basis stuff

$$
L_{A}: F^{n} \rightarrow F^{n}, \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

$$
\begin{array}{rlrl}
F^{n} & \xrightarrow{A} F^{n} \\
P^{-1} \left\lvert\, \begin{array}{lll}
2 & & 2 \mid P^{-1} \\
F^{n} & B & F^{n}
\end{array}\right.
\end{array}
$$

Review of change of basis stuff

$$
L_{A}: F^{n} \rightarrow F^{n}, \quad \alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

\[

\]

$$
B=P^{-1} A P
$$

$$
P=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
v_{1} & \ddots & v_{n} \\
\mid & \cdots & \mid
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

What matrix represents the linear function $L_{A}: F^{3} \rightarrow F^{3}$ with respect to the ordered basis $\alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle$?

Example

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

What matrix represents the linear function $L_{A}: F^{3} \rightarrow F^{3}$ with respect to the ordered basis $\alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle$?

$$
P=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

What matrix represents the linear function $L_{A}: F^{3} \rightarrow F^{3}$ with respect to the ordered basis $\alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle$?

$$
P=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right), \quad B=P^{-1} A P=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

What matrix represents the linear function $L_{A}: F^{3} \rightarrow F^{3}$ with respect to the ordered basis $\alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle$?

$$
P=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right), \quad B=P^{-1} A P=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

For instance,

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

What matrix represents the linear function $L_{A}: F^{3} \rightarrow F^{3}$ with respect to the ordered basis $\alpha=\langle(1,1,1),(1,0,-1),(0,1,-1)\rangle$?

$$
P=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & -1
\end{array}\right), \quad B=P^{-1} A P=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

For instance,

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad A v=\lambda v
$$

HW problem

If A and B are $n \times n$ matrices, prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

HW problem

If A and B are $n \times n$ matrices, prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Solution.

$$
\operatorname{tr}(A B)=\sum_{i=1}^{n}(A B)_{i i}
$$

HW problem

If A and B are $n \times n$ matrices, prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Solution.

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i}
\end{aligned}
$$

HW problem

If A and B are $n \times n$ matrices, prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Solution.

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} A_{i k} B_{k i}
\end{aligned}
$$

HW problem

If A and B are $n \times n$ matrices, prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Solution.

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} B_{k i} A_{i k}
\end{aligned}
$$

HW problem

If A and B are $n \times n$ matrices, prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Solution.

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} B_{k i} A_{i k} \\
& =\sum_{k=1}^{n}(B A)_{k k}
\end{aligned}
$$

HW problem

If A and B are $n \times n$ matrices, prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Solution.

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} B_{k i} A_{i k} \\
& =\sum_{k=1}^{n}(B A)_{k k} \\
& =\operatorname{tr}(B A) .
\end{aligned}
$$

HW problem

Therefore,

$$
\operatorname{tr}\left(P^{-1} A P\right)
$$

HW problem

Therefore,

$$
\operatorname{tr}\left(P^{-1} A P\right)=\operatorname{tr}\left(\left(P^{-1} A\right) P\right)
$$

HW problem

Therefore,

$$
\operatorname{tr}\left(P^{-1} A P\right)=\operatorname{tr}\left(\left(P^{-1} A\right) P\right)=\operatorname{tr}\left(P\left(P^{-1} A\right)\right)
$$

HW problem

Therefore,

$$
\begin{aligned}
\operatorname{tr}\left(P^{-1} A P\right) & =\operatorname{tr}\left(\left(P^{-1} A\right) P\right)=\operatorname{tr}\left(P\left(P^{-1} A\right)\right) \\
& =\operatorname{tr}\left(\left(P P^{-1}\right) A\right)
\end{aligned}
$$

HW problem

Therefore,

$$
\begin{aligned}
\operatorname{tr}\left(P^{-1} A P\right) & =\operatorname{tr}\left(\left(P^{-1} A\right) P\right)=\operatorname{tr}\left(P\left(P^{-1} A\right)\right) \\
& =\operatorname{tr}\left(\left(P P^{-1}\right) A\right)=\operatorname{tr}\left(I_{n} A\right)
\end{aligned}
$$

HW problem

Therefore,

$$
\begin{aligned}
\operatorname{tr}\left(P^{-1} A P\right) & =\operatorname{tr}\left(\left(P^{-1} A\right) P\right)=\operatorname{tr}\left(P\left(P^{-1} A\right)\right) \\
& =\operatorname{tr}\left(\left(P P^{-1}\right) A\right)=\operatorname{tr}\left(I_{n} A\right) \\
& =\operatorname{tr}(A) .
\end{aligned}
$$

HW problem

Therefore,

$$
\begin{aligned}
\operatorname{tr}\left(P^{-1} A P\right) & =\operatorname{tr}\left(\left(P^{-1} A\right) P\right)=\operatorname{tr}\left(P\left(P^{-1} A\right)\right) \\
& =\operatorname{tr}\left(\left(P P^{-1}\right) A\right)=\operatorname{tr}\left(I_{n} A\right) \\
& =\operatorname{tr}(A)
\end{aligned}
$$

Later: $\operatorname{tr}(A)=$ sum of eigenvalues of A

Determinants

Definition. The determinant, det: $M_{n \times n}(F) \rightarrow F$ is a multilinear, alternating function of the rows of square matrix, normalized so that its value on the identity matrix is 1 .

Determinants

Definition. The determinant, det: $M_{n \times n}(F) \rightarrow F$ is a multilinear, alternating function of the rows of square matrix, normalized so that its value on the identity matrix is 1 .

1. Multilinear. The determinant is a linear function with respect to each row:

$$
\begin{aligned}
\operatorname{det}\left(r_{1}, \ldots, r_{i-1}, \lambda r_{i}+r_{i}^{\prime}, r_{i+1}, \ldots, r_{n}\right) & =\lambda \operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& +\operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}^{\prime}, r_{i+1}, \ldots, r_{n}\right)
\end{aligned}
$$

Determinants

Definition. The determinant, det: $M_{n \times n}(F) \rightarrow F$ is a multilinear, alternating function of the rows of square matrix, normalized so that its value on the identity matrix is 1 .

1. Multilinear. The determinant is a linear function with respect to each row:

$$
\begin{aligned}
\operatorname{det}\left(r_{1}, \ldots, r_{i-1}, \lambda r_{i}+r_{i}^{\prime}, r_{i+1}, \ldots, r_{n}\right) & =\lambda \operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& +\operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}^{\prime}, r_{i+1}, \ldots, r_{n}\right)
\end{aligned}
$$

2. Alternating. The determinant is zero if two of its arguments are equal:

$$
\operatorname{det}\left(r_{1}, \ldots, r_{n}\right)=0
$$

if $r_{i}=r_{j}$ for some $i \neq j$.

Determinants

Definition. The determinant, det: $M_{n \times n}(F) \rightarrow F$ is a multilinear, alternating function of the rows of square matrix, normalized so that its value on the identity matrix is 1 .

1. Multilinear. The determinant is a linear function with respect to each row:

$$
\begin{aligned}
\operatorname{det}\left(r_{1}, \ldots, r_{i-1}, \lambda r_{i}+r_{i}^{\prime}, r_{i+1}, \ldots, r_{n}\right) & =\lambda \operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}, r_{i+1}, \ldots, r_{n}\right) \\
& +\operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}^{\prime}, r_{i+1}, \ldots, r_{n}\right)
\end{aligned}
$$

2. Alternating. The determinant is zero if two of its arguments are equal:

$$
\operatorname{det}\left(r_{1}, \ldots, r_{n}\right)=0
$$

if $r_{i}=r_{j}$ for some $i \neq j$.
3. $\operatorname{Normalized.~} \operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=1$.

Main theorem

Theorem. For each $n \geq 0$, there exists a unique determinant function.

Secret importance of determinants

The determinant of $A \in M_{n \times n}(\mathbb{R})$ is \pm the volume of the parallelepiped spanned by the rows (or columns) of A :

$$
P(A)=\left\{p \in \mathbb{R}^{n}: p=\sum_{i=1}^{n} \lambda_{i} r_{i} \text { where } 0 \leq \lambda_{i} \leq 1 \text { for all } i\right\}
$$

Secret importance of determinants

The determinant of $A \in M_{n \times n}(\mathbb{R})$ is \pm the volume of the parallelepiped spanned by the rows (or columns) of A :

$$
P(A)=\left\{p \in \mathbb{R}^{n}: p=\sum_{i=1}^{n} \lambda_{i} r_{i} \text { where } 0 \leq \lambda_{i} \leq 1 \text { for all } i\right\}
$$

The sign defines the orientation of the ordered list of rows of A.

Secret importance of determinants

The determinant of $A \in M_{n \times n}(\mathbb{R})$ is \pm the volume of the parallelepiped spanned by the rows (or columns) of A :

$$
P(A)=\left\{p \in \mathbb{R}^{n}: p=\sum_{i=1}^{n} \lambda_{i} r_{i} \text { where } 0 \leq \lambda_{i} \leq 1 \text { for all } i\right\}
$$

The sign defines the orientation of the ordered list of rows of A. Multivariable calculus builds on this to compute volumes of more general subsets of \mathbb{R}^{n}.

Determinants \& row operations

Proposition. Let $A, B \in M_{n \times n}(F)$.

Determinants \& row operations

Proposition. Let $A, B \in M_{n \times n}(F)$.

1. If B is obtained from A by swapping two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Determinants \& row operations

Proposition. Let $A, B \in M_{n \times n}(F)$.

1. If B is obtained from A by swapping two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
2. If B is obtained from A by scaling a row by a scalar λ, then $\operatorname{det}(B)=\lambda \operatorname{det}(A)$ (even if $\lambda=0$).

Determinants \& row operations

Proposition. Let $A, B \in M_{n \times n}(F)$.

1. If B is obtained from A by swapping two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
2. If B is obtained from A by scaling a row by a scalar λ, then $\operatorname{det}(B)=\lambda \operatorname{det}(A)$ (even if $\lambda=0$).
3. If B is obtained from A by adding a scalar multiple of one row to another row, then $\operatorname{det}(B)=\operatorname{det}(A)$.

Determinants \& row operations

Proposition. Let $A, B \in M_{n \times n}(F)$.

1. If B is obtained from A by swapping two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
2. If B is obtained from A by scaling a row by a scalar λ, then $\operatorname{det}(B)=\lambda \operatorname{det}(A)$ (even if $\lambda=0$).
3. If B is obtained from A by adding a scalar multiple of one row to another row, then $\operatorname{det}(B)=\operatorname{det}(A)$.

Corollary. Let $A \in M_{n \times n}(F)$, and let E be the reduced row echelon form of A. Then there exists a non-zero $k \in F$ such that $\operatorname{det}(A)=k \operatorname{det}(E)$.

Example

Compute the determinant of a general 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Example

Compute

$$
\operatorname{det}\left(\begin{array}{rrr}
1 & 2 & -2 \\
9 & 4 & 0 \\
2 & 2 & 4
\end{array}\right)
$$

Example

$$
\operatorname{det}\left(\begin{array}{cccc}
4 & 2 & -3 & 8 \\
0 & 5 & 1 & 3 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Example

$$
\operatorname{det}\left(\begin{array}{cccc}
4 & 2 & -3 & 8 \\
0 & 5 & 1 & 3 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 3
\end{array}\right)=(4 \cdot 5 \cdot 2 \cdot 3) \operatorname{det}\left(\begin{array}{cccc}
1 & 1 / 2 & -3 / 2 & 4 \\
0 & 1 & 1 / 5 & 3 / 5 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example

$\operatorname{det}\left(\begin{array}{cccc}4 & 2 & -3 & 8 \\ 0 & 5 & 1 & 3 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3\end{array}\right)=(4 \cdot 5 \cdot 2 \cdot 3) \operatorname{det}\left(\begin{array}{cccc}1 & 1 / 2 & -3 / 2 & 4 \\ 0 & 1 & 1 / 5 & 3 / 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right)$

$$
=(4 \cdot 5 \cdot 2 \cdot 3) \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example

$\operatorname{det}\left(\begin{array}{cccc}4 & 2 & -3 & 8 \\ 0 & 5 & 1 & 3 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3\end{array}\right)=(4 \cdot 5 \cdot 2 \cdot 3) \operatorname{det}\left(\begin{array}{cccc}1 & 1 / 2 & -3 / 2 & 4 \\ 0 & 1 & 1 / 5 & 3 / 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
& =(4 \cdot 5 \cdot 2 \cdot 3) \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =(4 \cdot 5 \cdot 2 \cdot 3) \cdot 1=120 .
\end{aligned}
$$

Example

Compute

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example

Compute

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\operatorname{det}\left(r_{1}, r_{2}, r_{3}, \overrightarrow{0}\right)=\operatorname{det}\left(r_{1}, r_{2}, r_{3}, 0 \cdot \overrightarrow{0}\right)
\end{gathered}
$$

Example

Compute

$$
\begin{aligned}
&\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \operatorname{det}\left(r_{1}, r_{2}, r_{3}, \overrightarrow{0}\right)=\operatorname{det}\left(r_{1}, r_{2}, r_{3}, 0 \cdot \overrightarrow{0}\right) \\
&=0 \cdot \operatorname{det}\left(r_{1}, r_{2}, r_{3}, \overrightarrow{0}\right)
\end{aligned}
$$

Example

Compute

$$
\begin{aligned}
&\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \operatorname{det}\left(r_{1}, r_{2}, r_{3}, \overrightarrow{0}\right)=\operatorname{det}\left(r_{1}, r_{2}, r_{3}, 0 \cdot \overrightarrow{0}\right) \\
&=0 \cdot \operatorname{det}\left(r_{1}, r_{2}, r_{3}, \overrightarrow{0}\right) \\
&=0
\end{aligned}
$$

Example

Compute

$$
\begin{aligned}
&\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \operatorname{det}\left(r_{1}, r_{2}, r_{3}, \overrightarrow{0}\right)=\operatorname{det}\left(r_{1}, r_{2}, r_{3}, 0 \cdot \overrightarrow{0}\right) \\
&=0 \cdot \operatorname{det}\left(r_{1}, r_{2}, r_{3}, \overrightarrow{0}\right) \\
&=0
\end{aligned}
$$

In general: if A has a row of zeros, then $\operatorname{det}(A)=0$.

Upper-triangular matrices

Definition. A matrix $A \in M_{n \times n}(F)$ is upper-triangular if $A_{i j}=0$ for all $i>j$.

Upper-triangular matrices

Definition. A matrix $A \in M_{n \times n}(F)$ is upper-triangular if $A_{i j}=0$ for all $i>j$.

Examples.

1.

$$
\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 10
\end{array}\right)
$$

Upper-triangular matrices

Definition. A matrix $A \in M_{n \times n}(F)$ is upper-triangular if $A_{i j}=0$ for all $i>j$.

Examples.

1.

$$
\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 10
\end{array}\right)
$$

2.

$$
\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 0 & 6 & 7 \\
0 & 0 & 0 & 9 \\
0 & 0 & 0 & 10
\end{array}\right)
$$

Upper-triangular matrices

Definition. A matrix $A \in M_{n \times n}(F)$ is upper-triangular if $A_{i j}=0$ for all $i>j$.

Examples.

1.

$$
\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 10
\end{array}\right)
$$

2.

$$
\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 0 & 6 & 7 \\
0 & 0 & 0 & 9 \\
0 & 0 & 0 & 10
\end{array}\right)
$$

3. Any square matrix in reduced row echelon form.

Upper-triangular matrices

Proposition. The determinant of an upper-triangular matrix is the product of its diagonal elements.

Upper-triangular matrices

Proposition. The determinant of an upper-triangular matrix is the product of its diagonal elements.

Proof. See today's lecture notes.

Invertibility criterion

Proposition. Let $A \in M_{n \times n}(F)$. The following are equivalent:

1. $\operatorname{det}(A) \neq 0$,
2. $\operatorname{rank}(A)=n$,
3. A is invertible, i.e., A has an inverse.

Invertibility criterion

Proposition. Let $A \in M_{n \times n}(F)$. The following are equivalent:

1. $\operatorname{det}(A) \neq 0$,
2. $\operatorname{rank}(A)=n$,
3. A is invertible, i.e., A has an inverse.

Proof sketch.

- $\operatorname{det}(A)=k \operatorname{det}(E)$ with $k \neq 0$.

Invertibility criterion

Proposition. Let $A \in M_{n \times n}(F)$. The following are equivalent:

1. $\operatorname{det}(A) \neq 0$,
2. $\operatorname{rank}(A)=n$,
3. A is invertible, i.e., A has an inverse.

Proof sketch.

- $\operatorname{det}(A)=k \operatorname{det}(E)$ with $k \neq 0$.
- $\operatorname{det}(E) \neq 0 \quad \Leftrightarrow \quad E=I_{n}$

