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Review of change of basis stuff

f : V →W

α = 〈v1, . . . , vn〉, β = 〈w1, . . . ,wn〉

V W

F n F m

φα ∼

f

φβ∼

[f ]βα

φα : V ∼−→ F n

v = a1v1 + · · ·+ anvn 7→ (a1, . . . , an)

φβ : W ∼−→ F m

w = b1w1 + · · ·+ bnwm 7→ (b1, . . . , bm)
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Example

A =

 0 1 1
1 0 1
1 1 0


What matrix represents the linear function LA : F 3 → F 3 with
respect to the ordered basis α = 〈(1, 1, 1), (1, 0,−1), (0, 1,−1)〉?

P =

 1 1 0
1 0 1
1 −1 −1

 , B = P−1AP =

 2 0 0
0 −1 0
0 0 −1

 .
For instance, 0 1 1

1 0 1
1 1 0


 1

1
1

 = 2

 1
1
1

 , Av = λv
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HW problem
If A and B are n × n matrices, prove that tr(AB) = tr(BA).

Solution.

tr(AB) =
n∑

i=1
(AB)ii

=
n∑

i=1

n∑
k=1

AikBki

=
n∑

k=1

n∑
i=1

AikBki

=
n∑

k=1

n∑
i=1

BkiAik

=
n∑

k=1
(BA)kk

= tr(BA).
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HW problem

Therefore,

tr(P−1AP)

= tr((P−1A)P) = tr(P(P−1A))

= tr((PP−1)A) = tr(InA)

= tr(A).

Later: tr(A) = sum of eigenvalues of A
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Determinants

Definition. The determinant, det : Mn×n(F )→ F is a multilinear,
alternating function of the rows of square matrix, normalized so
that its value on the identity matrix is 1.

1. Multilinear. The determinant is a linear function with respect
to each row:

det(r1, . . . , ri−1, λ ri + r ′i , ri+1, . . . , rn) = λ det(r1, . . . , ri−1, ri , ri+1, . . . , rn)
+ det(r1, . . . , ri−1, r ′i , ri+1, . . . , rn).

2. Alternating. The determinant is zero if two of its arguments
are equal:

det(r1, . . . , rn) = 0

if ri = rj for some i 6= j .
3. Normalized. det(In) = det(e1, . . . , en) = 1.
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Main theorem

Theorem. For each n ≥ 0, there exists a unique determinant
function.



Secret importance of determinants

The determinant of A ∈ Mn×n(R) is ± the volume of the
parallelepiped spanned by the rows (or columns) of A:

P(A) =
{

p ∈ Rn : p =
n∑

i=1
λi ri where 0 ≤ λi ≤ 1 for all i

}
.

The sign defines the orientation of the ordered list of rows of A.
Multivariable calculus builds on this to compute volumes of more
general subsets of Rn.
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Determinants & row operations

Proposition. Let A,B ∈ Mn×n(F ).

1. If B is obtained from A by swapping two rows, then
det(B) = − det(A).

2. If B is obtained from A by scaling a row by a scalar λ,
then det(B) = λ det(A) (even if λ = 0).

3. If B is obtained from A by adding a scalar multiple of one row
to another row, then det(B) = det(A).

Corollary. Let A ∈ Mn×n(F ), and let E be the reduced row
echelon form of A. Then there exists a non-zero k ∈ F such that
det(A) = k det(E ).
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Example

Compute the determinant of a general 2× 2 matrix

A =
(

a b
c d

)
.
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Example

det


4 2 −3 8
0 5 1 3
0 0 2 6
0 0 0 3



= (4 · 5 · 2 · 3) det


1 1/2 −3/2 4
0 1 1/5 3/5
0 0 1 3
0 0 0 1



= (4 · 5 · 2 · 3) det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= (4 · 5 · 2 · 3) · 1 = 120.
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det(r1, r2, r3,~0) = det(r1, r2, r3, 0 ·~0)

= 0 · det(r1, r2, r3,~0)

= 0

In general: if A has a row of zeros, then det(A) = 0.
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Upper-triangular matrices

Definition. A matrix A ∈ Mn×n(F ) is upper-triangular if Aij = 0
for all i > j .

Examples.
1. 

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10


2. 

1 2 3 4
0 0 6 7
0 0 0 9
0 0 0 10


3. Any square matrix in reduced row echelon form.
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Upper-triangular matrices

Proposition. The determinant of an upper-triangular matrix is the
product of its diagonal elements.

Proof. See today’s lecture notes.
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Invertibility criterion

Proposition. Let A ∈ Mn×n(F ). The following are equivalent:
1. det(A) 6= 0,
2. rank(A) = n,
3. A is invertible, i.e., A has an inverse.

Proof sketch.
I det(A) = k det(E ) with k 6= 0.
I det(E ) 6= 0 ⇔ E = In
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