o

© Math 201

Section F03

September 29, 2021



Colloquium

Remember to advertise the colloquium!
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Range and nullspace

Definition. The image or range of a linear function f: V — W is
the subspace

im(f) :=R(f) = f(V) ={f(v):ve V} C W.

The dimension of the image of f is the rank of f (provided it is
finite-dimensional) and is denoted rank(f) or rk(f).

Remark. If f: V — W is a linear function, and B is a basis for V,
then
im(f) = Span(f(B)).
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Kernel (or nullspace)

Definition. Let f: V — W be a linear mapping. The kernel or
nullspace of f, denoted ker(f) or N(f), respectively, is the inverse
image of {Ow }:

ker(f) := N(f) :== f1({Ow}) :={ve V:f(v)=0}.

It is a subspace of V' (by Proposition 2). The dimension of the
kernel is called the nullity of f (provided it is finite-dimensional)
and is denoted nullity(f).
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Rank-nullity theorem

Theorem. (Rank-nullity theorem) Let f: V — W be a linear
mapping, and suppose that V is finite-dimensional. Then

rank(f) + nullity(f) = dim V.
In other words,

dim(im(f)) + dim(ker(f)) = dim V.
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V = Span {vi, v, v3} E = Span {ej2, €13, €3} .

0:E—V

€jj > Vj — V.

Question: What is the kernel of 07



