Math 201

Section F03

September 29, 2021

Colloquium

Remember to advertise the colloquium!

Range and nullspace

$f: V \rightarrow W$ is linear if for all $u, v \in V$ and $\lambda \in F$,

$$
f(u+v)=f(u)+f(v) \quad \text { and } \quad f(\lambda u)=\lambda f(u) .
$$

Range and nullspace

$f: V \rightarrow W$ is linear if for all $u, v \in V$ and $\lambda \in F$,

$$
f(u+v)=f(u)+f(v) \quad \text { and } \quad f(\lambda u)=\lambda f(u) .
$$

Definition/Proposition 1. Suppose $f: V \rightarrow W$ is linear and $U \subseteq V$ is a subspace of V.

Range and nullspace

$f: V \rightarrow W$ is linear if for all $u, v \in V$ and $\lambda \in F$,

$$
f(u+v)=f(u)+f(v) \quad \text { and } \quad f(\lambda u)=\lambda f(u) .
$$

Definition/Proposition 1. Suppose $f: V \rightarrow W$ is linear and $U \subseteq V$ is a subspace of V. Then the image of U under f

Range and nullspace

$f: V \rightarrow W$ is linear if for all $u, v \in V$ and $\lambda \in F$,

$$
f(u+v)=f(u)+f(v) \quad \text { and } \quad f(\lambda u)=\lambda f(u) .
$$

Definition/Proposition 1. Suppose $f: V \rightarrow W$ is linear and $U \subseteq V$ is a subspace of V. Then the image of U under f is the set

$$
f(U):=\{f(u): u \in U\} \subseteq W
$$

Range and nullspace

$f: V \rightarrow W$ is linear if for all $u, v \in V$ and $\lambda \in F$,

$$
f(u+v)=f(u)+f(v) \quad \text { and } \quad f(\lambda u)=\lambda f(u) .
$$

Definition/Proposition 1. Suppose $f: V \rightarrow W$ is linear and $U \subseteq V$ is a subspace of V. Then the image of U under f is the set

$$
f(U):=\{f(u): u \in U\} \subseteq W
$$

The image of U under f is a subspace of W.

Range and nullspace

Definition. The image or range of a linear function $f: V \rightarrow W$ is the subspace

$$
\operatorname{im}(f):=\mathcal{R}(f):=f(V):=\{f(v): v \in V\} \subseteq W
$$

Range and nullspace

Definition. The image or range of a linear function $f: V \rightarrow W$ is the subspace

$$
\operatorname{im}(f):=\mathcal{R}(f):=f(V):=\{f(v): v \in V\} \subseteq W
$$

The dimension of the image of f is the rank of f (provided it is finite-dimensional) and is denoted $\operatorname{rank}(f)$ or $\operatorname{rk}(f)$.

Range and nullspace

Definition. The image or range of a linear function $f: V \rightarrow W$ is the subspace

$$
\operatorname{im}(f):=\mathcal{R}(f):=f(V):=\{f(v): v \in V\} \subseteq W
$$

The dimension of the image of f is the rank of f (provided it is finite-dimensional) and is denoted $\operatorname{rank}(f)$ or $\operatorname{rk}(f)$.

Remark. If $f: V \rightarrow W$ is a linear function, and B is a basis for V,

Range and nullspace

Definition. The image or range of a linear function $f: V \rightarrow W$ is the subspace

$$
\operatorname{im}(f):=\mathcal{R}(f):=f(V):=\{f(v): v \in V\} \subseteq W
$$

The dimension of the image of f is the rank of f (provided it is finite-dimensional) and is denoted $\operatorname{rank}(f)$ or $\operatorname{rk}(f)$.

Remark. If $f: V \rightarrow W$ is a linear function, and B is a basis for V, then

$$
\operatorname{im}(f)=\operatorname{Span}(f(B))
$$

Range and nullspace

Definition/Proposition 2. Let $f: V \rightarrow W$ be a linear mapping, and let U be a subspace of W.

Range and nullspace

Definition/Proposition 2. Let $f: V \rightarrow W$ be a linear mapping, and let U be a subspace of W. Then the inverse image of U under f is

Range and nullspace

Definition/Proposition 2. Let $f: V \rightarrow W$ be a linear mapping, and let U be a subspace of W. Then the inverse image of U under f is the set

$$
f^{-1}(U):=\{v \in V: f(v) \in U\} \subseteq V
$$

Range and nullspace

Definition/Proposition 2. Let $f: V \rightarrow W$ be a linear mapping, and let U be a subspace of W. Then the inverse image of U under f is the set

$$
f^{-1}(U):=\{v \in V: f(v) \in U\} \subseteq V
$$

The inverse image of U under f is a subspace of V.

Kernel (or nullspace)

Definition. Let $f: V \rightarrow W$ be a linear mapping.

Kernel (or nullspace)

Definition. Let $f: V \rightarrow W$ be a linear mapping. The kernel or nullspace of f, denoted $\operatorname{ker}(f)$ or $\mathcal{N}(f)$, respectively, is the inverse image of $\{0 w\}$:

Kernel (or nullspace)

Definition. Let $f: V \rightarrow W$ be a linear mapping. The kernel or nullspace of f, denoted $\operatorname{ker}(f)$ or $\mathcal{N}(f)$, respectively, is the inverse image of $\{0 w\}$:

$$
\operatorname{ker}(f):=\mathcal{N}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\}
$$

Kernel (or nullspace)

Definition. Let $f: V \rightarrow W$ be a linear mapping. The kernel or nullspace of f, denoted $\operatorname{ker}(f)$ or $\mathcal{N}(f)$, respectively, is the inverse image of $\left\{0_{w}\right\}$:

$$
\operatorname{ker}(f):=\mathcal{N}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\}
$$

It is a subspace of V (by Proposition 2).

Kernel (or nullspace)

Definition. Let $f: V \rightarrow W$ be a linear mapping. The kernel or nullspace of f, denoted $\operatorname{ker}(f)$ or $\mathcal{N}(f)$, respectively, is the inverse image of $\left\{0_{w}\right\}$:

$$
\operatorname{ker}(f):=\mathcal{N}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\}
$$

It is a subspace of V (by Proposition 2). The dimension of the kernel is called the nullity of f (provided it is finite-dimensional) and is denoted nullity (f).

Rank-nullity theorem

Theorem. (Rank-nullity theorem) Let $f: V \rightarrow W$ be a linear mapping, and suppose that V is finite-dimensional.

Rank-nullity theorem

Theorem. (Rank-nullity theorem) Let $f: V \rightarrow W$ be a linear mapping, and suppose that V is finite-dimensional. Then

$$
\operatorname{rank}(f)+\operatorname{nullity}(f)=\operatorname{dim} V
$$

Rank-nullity theorem

Theorem. (Rank-nullity theorem) Let $f: V \rightarrow W$ be a linear mapping, and suppose that V is finite-dimensional. Then

$$
\operatorname{rank}(f)+\operatorname{nullity}(f)=\operatorname{dim} V
$$

In other words,

$$
\operatorname{dim}(\operatorname{im}(f))+\operatorname{dim}(\operatorname{ker}(f))=\operatorname{dim} V
$$

A little graph theory

A little graph theory

$$
V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\} \quad E=\operatorname{Span}\left\{e_{12}, e_{13}, e_{23}\right\} .
$$

A little graph theory

$$
V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\} \quad E=\operatorname{Span}\left\{e_{12}, e_{13}, e_{23}\right\} .
$$

$$
\begin{aligned}
\partial: E & \rightarrow V \\
e_{i j} & \mapsto v_{j}-v_{i} .
\end{aligned}
$$

A little graph theory

$$
V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\} \quad E=\operatorname{Span}\left\{e_{12}, e_{13}, e_{23}\right\} .
$$

$$
\begin{aligned}
\partial: E & \rightarrow V \\
e_{i j} & \mapsto v_{j}-v_{i} .
\end{aligned}
$$

Question: What is the kernel of ∂ ?

