Math 201

Section F03

October 1, 2021

Review

Last time: $f: V \rightarrow W$

Review

Last time: $f: V \rightarrow W$
Kernel $=$ stuff in V sent to 0_{W}

Review

Last time: $f: V \rightarrow W$
Kernel $=$ stuff in V sent to 0_{W}

$$
\mathcal{N}(f):=\operatorname{ker}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\}
$$

Review

Last time: $f: V \rightarrow W$
Kernel $=$ stuff in V sent to 0_{W}

$$
\mathcal{N}(f):=\operatorname{ker}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\}
$$

$\operatorname{nullity}(f):=\operatorname{dim}(\operatorname{ker}(f))$.

Review

Last time: $f: V \rightarrow W$
Kernel $=$ stuff in V sent to 0_{W}

$$
\mathcal{N}(f):=\operatorname{ker}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\}
$$

$$
\operatorname{nullity}(f):=\operatorname{dim}(\operatorname{ker}(f))
$$

Image $=$ everything in W hit by something in V

Review

Last time: $f: V \rightarrow W$
Kernel $=$ stuff in V sent to 0_{W}

$$
\begin{aligned}
\mathcal{N}(f) & :=\operatorname{ker}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\} \\
\operatorname{nullity}(f) & :=\operatorname{dim}(\operatorname{ker}(f)) .
\end{aligned}
$$

Image $=$ everything in W hit by something in V

$$
\mathcal{R}(f)=\operatorname{im}(f)=f(V)=\{f(v) \in W: v \in V\}
$$

Review

Last time: $f: V \rightarrow W$
Kernel $=$ stuff in V sent to 0_{W}

$$
\begin{aligned}
\mathcal{N}(f) & :=\operatorname{ker}(f):=f^{-1}(\{0 w\}):=\{v \in V: f(v)=0\} \\
\operatorname{nullity}(f) & :=\operatorname{dim}(\operatorname{ker}(f)) .
\end{aligned}
$$

Image $=$ everything in W hit by something in V

$$
\mathcal{R}(f)=\operatorname{im}(f)=f(V)=\{f(v) \in W: v \in V\}
$$

$$
\operatorname{rank}(f)=\operatorname{dim}(\operatorname{im}(f))
$$

Rank-nullity theorem

Theorem. (Rank-nullity theorem) Let $f: V \rightarrow W$ be a linear mapping, and suppose that V is finite-dimensional. Then

$$
\operatorname{rank}(f)+\operatorname{nullity}(f)=\operatorname{dim} V
$$

Rank-nullity theorem

Theorem. (Rank-nullity theorem) Let $f: V \rightarrow W$ be a linear mapping, and suppose that V is finite-dimensional. Then

$$
\operatorname{rank}(f)+\operatorname{nullity}(f)=\operatorname{dim} V
$$

In other words,

$$
\operatorname{dim}(\operatorname{im}(f))+\operatorname{dim}(\operatorname{ker}(f))=\operatorname{dim} V
$$

Rank-nullity theorem

Theorem. (Rank-nullity theorem) Let $f: V \rightarrow W$ be a linear mapping, and suppose that V is finite-dimensional. Then

$$
\operatorname{rank}(f)+\operatorname{nullity}(f)=\operatorname{dim} V
$$

In other words,

$$
\operatorname{dim}(\operatorname{im}(f))+\operatorname{dim}(\operatorname{ker}(f))=\operatorname{dim} V
$$

Proof.

Isomorphisms

Definition. The linear function $f: V \rightarrow W$ is an isomorphism if

Isomorphisms

Definition. The linear function $f: V \rightarrow W$ is an isomorphism if there exists a linear function $g: W \rightarrow V$ such that $g \circ f=\operatorname{id} V$,

Isomorphisms

Definition. The linear function $f: V \rightarrow W$ is an isomorphism if there exists a linear function $g: W \rightarrow V$ such that $g \circ f=\operatorname{id} V$,

and $f \circ g=\operatorname{id}_{W}$,

Isomorphisms

Definition. The linear function $f: V \rightarrow W$ is an isomorphism if there exists a linear function $g: W \rightarrow V$ such that $g \circ f=\operatorname{id} V$,

and $f \circ g=\operatorname{id}_{W}$,

The function g is called the inverse of f and denoted f^{-1}.

Examples of isomorphisms

$$
\begin{aligned}
f: M_{2 \times 3} & \rightarrow F^{6} \\
\left(\begin{array}{ccc}
u & v & w \\
x & y & z
\end{array}\right) & \mapsto(u, v, w, x, y, z)
\end{aligned}
$$

Examples of isomorphisms

$$
\begin{gathered}
f: M_{2 \times 3} \rightarrow F^{6} \\
\left(\begin{array}{ccc}
u & v & w \\
x & y & z
\end{array}\right) \mapsto(u, v, w, x, y, z) \\
\phi: F[x]_{\leq 3} \rightarrow F^{4} \\
a+b x+c x^{2}+d x^{3} \mapsto(a, b, c, d)
\end{gathered}
$$

Isomophisms

A linear function $f: V \rightarrow W$ has an inverse if and only if it is bijective.

Isomophisms

A linear function $f: V \rightarrow W$ has an inverse if and only if it is bijective.
$($ bijective $=$ injective (1-1) and surjective (onto))

Isomophisms

Proposition 1. The linear mapping $f: V \rightarrow W$ is injective (i.e., one-to-one) if and only if $\operatorname{ker}(f)=\left\{0_{V}\right\}$.

Isomophisms

Proposition 2. Let $f: V \rightarrow W$ be linear.

Isomophisms

Proposition 2. Let $f: V \rightarrow W$ be linear.
(a) The image of a dependent set is dependent.

Isomophisms

Proposition 2. Let $f: V \rightarrow W$ be linear.
(a) The image of a dependent set is dependent.
(b) The image of an independent set is independent provided f is injective.

Isomorphisms

Proposition 3. A linear mapping $f: V \rightarrow W$ is an isomorphism if and only if $\operatorname{ker}(f)=\left\{0_{v}\right\}$ and $\operatorname{im}(f)=W$, (i.e., if and only if its kernel is trivial and it is surjective).

Isomorphisms

Theorem 4. Let V be a vector space over F. Then V is isomorphic to F^{n} if and only if $\operatorname{dim} V=n$.

Isomorphisms

Corollary 5. Let V and W be finite-dimensional vectors spaces. Then V and W are isomorphic if and only if they have the same dimension.

Isomorphisms

Proposition 6. Let $f: V \rightarrow W$ be a linear function, and let $\operatorname{dim} V=\operatorname{dim} W<\infty$. Then the following are equivalent:
(a) f is injective (1-1),
(b) f is surjective (onto),
(c) f is an isomorphism.

Weekend assignment

- Learn the statement and proof of the rank-nullity theorem.
- Learn the proof that $f: V \rightarrow W$ is injective if and only if $\operatorname{ker}(f)=\left\{0_{v}\right\}$.

