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Dimension theorem (review)

Exchange Lemma. Suppose B = {v1, . . . , vn} is a basis for a
vector space V over a field F . Further, suppose that

w = a1v1 + · · ·+ anvn ∈ V (?)

with ai ∈ F , and such that a` 6= 0 for some ` ∈ {1, . . . , n}. Let B′
be the set of vectors obtained from B by exchanging w for v`, i.e.,
B′ := (B \ {v`}) ∪ {w}. Then B′ is also a basis for V .



Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the
same number of elements.

Proof outline.
– B = {v1, . . . , vn} a basis of minimal size.
– C any basis.Take w1, . . . , wn ∈ C . Goal: Show |B| = |C |.
– Apply exchange lemma to swap each wi into B to get a new
basis B′ = {w1, . . . , wn}.
– If there exists some w ∈ C \ B′, there’s trouble.
– Therefore, B′ = C and n = |B| = |B′| = |C |.
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Dimension

Definition. If V is a finite-dimensional vector space, then the
dimension of V , denoted dim V or dimF V is the number of
elements in any of its bases.

Examples.
– dim F n = n (for instance, {e1, . . . , en} is a basis).
– dimPd (F ) = dim F [x ]≤d = d + 1 (for instance, {1, x , . . . , xd} is
a basis).
– dim{(x , y , z) ∈ F 3 : x + y + z = 0} = 2 (for instance,
{(1, 0,−1), (0, 1,−1)} is a basis).
– dimRC = 2 (for instance, {1, i} is a basis).
– dimCC = 1 (for instance, {1} is a basis).
– dim{~0} = 0 (the basis is ∅, which has 0 elements).
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Corollaries of dimension theorem

Corollary. Let V be a vector space of dimension n. Then
1. If S ⊆ V is linearly independent, then S has at most n

elements.

2. If S ⊆ V is linearly independent, then S can be completed to a
basis for V , i.e., there exists a basis containing S as a subset.

3. If S has n elements, then S is linearly independent if and only
if it spans V .

4. If S spans V , then S has at least n elements.
5. A basis is a minimal spanning set for V . (Here, “minimal” can

mean the set has no strict subsets that also span V , or it can
mean minimal in number of elements.)

6. A basis is a maximal linearly independent subset of V . (Here,
“maximal” can mean there is no strict superset that is also
linearly independent, or it can mean maximal in number.)
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Game

F := Z/3Z. Points in F 4:

(1, 1, 2, 1) (1, 1, 2, 0) (2, 1, 2, 1)

(1, 1, 0, 1) (2, 0, 1, 0) (1, 0, 1, 1)

(2, 1, 1, 0) (1, 2, 0, 0) (1, 2, 2, 1)

(1, 2, 0, 1) (2, 0, 1, 1) (0, 0, 2, 2)

Goal: find subsets of size three of this array that sum to (0, 0, 0, 0).



Solutions.

(1, 1, 2, 1) (1, 1, 2, 0) (2, 1, 2, 1)

(1, 1, 0, 1) (2, 0, 1, 0) (1, 0, 1, 1)

(2, 1, 1, 0) (1, 2, 0, 0) (1, 2, 2, 1)

(1, 2, 0, 1) (2, 0, 1, 1) (0, 0, 2, 2)

– (1, 1, 2, 1), (1, 0, 1, 1), (1, 2, 0, 1)

– (1, 1, 0, 1), (1, 0, 1, 1), (1, 2, 2, 1)
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Game of Set

(1, 1, 2, 1) (1, 1, 2, 0) (2, 1, 2, 1)
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