Math 201

Section F03

September 22, 2021

Dimension theorem (review)

Exchange Lemma. Suppose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a vector space V over a field F. Further, suppose that

$$
w=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V
$$

with $a_{i} \in F$, and such that $a_{\ell} \neq 0$ for some $\ell \in\{1, \ldots, n\}$. Let B^{\prime} be the set of vectors obtained from B by exchanging w for v_{ℓ}, i.e., $B^{\prime}:=\left(B \backslash\left\{v_{\ell}\right\}\right) \cup\{w\}$. Then B^{\prime} is also a basis for V.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Proof outline.

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of minimal size.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Proof outline.

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of minimal size.
- C any basis.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Proof outline.

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of minimal size.
- C any basis. Take $w_{1}, \ldots, w_{n} \in C$.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Proof outline.

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of minimal size.
- C any basis. Take $w_{1}, \ldots, w_{n} \in C$. Goal: Show $|B|=|C|$.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Proof outline.

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of minimal size.
- C any basis. Take $w_{1}, \ldots, w_{n} \in C$. Goal: Show $|B|=|C|$.
- Apply exchange lemma to swap each w_{i} into B to get a new basis $B^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}$.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Proof outline.

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of minimal size.
- C any basis. Take $w_{1}, \ldots, w_{n} \in C$. Goal: Show $|B|=|C|$.
- Apply exchange lemma to swap each w_{i} into B to get a new basis $B^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}$.
- If there exists some $w \in C \backslash B^{\prime}$, there's trouble.

Dimension theorem (review)

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Proof outline.

- $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of minimal size.
- C any basis. Take $w_{1}, \ldots, w_{n} \in C$. Goal: Show $|B|=|C|$.
- Apply exchange lemma to swap each w_{i} into B to get a new basis $B^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}$.
- If there exists some $w \in C \backslash B^{\prime}$, there's trouble.
- Therefore, $B^{\prime}=C$ and $n=|B|=\left|B^{\prime}\right|=|C|$.

Dimension

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$ is the number of elements in any of its bases.

Dimension

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$ is the number of elements in any of its bases.

Examples.

$-\operatorname{dim} F^{n}=n$ (for instance, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis).

Dimension

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$ is the number of elements in any of its bases.

Examples.

$-\operatorname{dim} F^{n}=n$ (for instance, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis).
$-\operatorname{dim} \mathcal{P}_{d}(F)=\operatorname{dim} F[x]_{\leq d}=d+1$ (for instance, $\left\{1, x, \ldots, x^{d}\right\}$ is
a basis).

Dimension

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$ is the number of elements in any of its bases.

Examples.

$-\operatorname{dim} F^{n}=n$ (for instance, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis).
$-\operatorname{dim} \mathcal{P}_{d}(F)=\operatorname{dim} F[x]_{\leq d}=d+1$ (for instance, $\left\{1, x, \ldots, x^{d}\right\}$ is
a basis).
$-\operatorname{dim}\left\{(x, y, z) \in F^{3}: x+y+z=0\right\}=2$ (for instance,
$\{(1,0,-1),(0,1,-1)\}$ is a basis).

Dimension

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$ is the number of elements in any of its bases.

Examples.

$-\operatorname{dim} F^{n}=n$ (for instance, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis).
$-\operatorname{dim} \mathcal{P}_{d}(F)=\operatorname{dim} F[x]_{\leq d}=d+1$ (for instance, $\left\{1, x, \ldots, x^{d}\right\}$ is
a basis).
$-\operatorname{dim}\left\{(x, y, z) \in F^{3}: x+y+z=0\right\}=2$ (for instance,
$\{(1,0,-1),(0,1,-1)\}$ is a basis).

- $\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$ (for instance, $\{1, i\}$ is a basis).

Dimension

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$ is the number of elements in any of its bases.

Examples.

$-\operatorname{dim} F^{n}=n$ (for instance, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis).
$-\operatorname{dim} \mathcal{P}_{d}(F)=\operatorname{dim} F[x]_{\leq d}=d+1$ (for instance, $\left\{1, x, \ldots, x^{d}\right\}$ is
a basis).
$-\operatorname{dim}\left\{(x, y, z) \in F^{3}: x+y+z=0\right\}=2$ (for instance,
$\{(1,0,-1),(0,1,-1)\}$ is a basis).

- $\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$ (for instance, $\{1, i\}$ is a basis).
- $\operatorname{dim}_{\mathbb{C}} \mathbb{C}=1$ (for instance, $\{1\}$ is a basis).

Dimension

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$ is the number of elements in any of its bases.

Examples.

$-\operatorname{dim} F^{n}=n$ (for instance, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis).
$-\operatorname{dim} \mathcal{P}_{d}(F)=\operatorname{dim} F[x]_{\leq d}=d+1$ (for instance, $\left\{1, x, \ldots, x^{d}\right\}$ is
a basis).
$-\operatorname{dim}\left\{(x, y, z) \in F^{3}: x+y+z=0\right\}=2$ (for instance,
$\{(1,0,-1),(0,1,-1)\}$ is a basis).

- $\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$ (for instance, $\{1, i\}$ is a basis).
$-\operatorname{dim}_{\mathbb{C}} \mathbb{C}=1$ (for instance, $\{1\}$ is a basis).
$-\operatorname{dim}\{\overrightarrow{0}\}=0$ (the basis is \emptyset, which has 0 elements).

Corollaries of dimension theorem

Corollary. Let V be a vector space of dimension n. Then

1. If $S \subseteq V$ is linearly independent, then S has at most n elements.

Corollaries of dimension theorem

Corollary. Let V be a vector space of dimension n. Then

1. If $S \subseteq V$ is linearly independent, then S has at most n elements.
2. If $S \subseteq V$ is linearly independent, then S can be completed to a basis for V, i.e., there exists a basis containing S as a subset.

Corollaries of dimension theorem

Corollary. Let V be a vector space of dimension n. Then

1. If $S \subseteq V$ is linearly independent, then S has at most n elements.
2. If $S \subseteq V$ is linearly independent, then S can be completed to a basis for V, i.e., there exists a basis containing S as a subset.
3. If S has n elements, then S is linearly independent if and only if it spans V.

Corollaries of dimension theorem

Corollary. Let V be a vector space of dimension n. Then

1. If $S \subseteq V$ is linearly independent, then S has at most n elements.
2. If $S \subseteq V$ is linearly independent, then S can be completed to a basis for V, i.e., there exists a basis containing S as a subset.
3. If S has n elements, then S is linearly independent if and only if it spans V.
4. If S spans V, then S has at least n elements.

Corollaries of dimension theorem

Corollary. Let V be a vector space of dimension n. Then

1. If $S \subseteq V$ is linearly independent, then S has at most n elements.
2. If $S \subseteq V$ is linearly independent, then S can be completed to a basis for V, i.e., there exists a basis containing S as a subset.
3. If S has n elements, then S is linearly independent if and only if it spans V.
4. If S spans V, then S has at least n elements.
5. A basis is a minimal spanning set for V. (Here, "minimal" can mean the set has no strict subsets that also span V, or it can mean minimal in number of elements.)

Corollaries of dimension theorem

Corollary. Let V be a vector space of dimension n. Then

1. If $S \subseteq V$ is linearly independent, then S has at most n elements.
2. If $S \subseteq V$ is linearly independent, then S can be completed to a basis for V, i.e., there exists a basis containing S as a subset.
3. If S has n elements, then S is linearly independent if and only if it spans V.
4. If S spans V, then S has at least n elements.
5. A basis is a minimal spanning set for V. (Here, "minimal" can mean the set has no strict subsets that also span V, or it can mean minimal in number of elements.)
6. A basis is a maximal linearly independent subset of V. (Here, "maximal" can mean there is no strict superset that is also linearly independent, or it can mean maximal in number.)

Game

$F:=\mathbb{Z} / 3 \mathbb{Z}$. Points in F^{4} :

$$
\begin{array}{lll}
(1,1,2,1) & (1,1,2,0) & (2,1,2,1) \\
(1,1,0,1) & (2,0,1,0) & (1,0,1,1) \\
(2,1,1,0) & (1,2,0,0) & (1,2,2,1) \\
(1,2,0,1) & (2,0,1,1) & (0,0,2,2)
\end{array}
$$

Goal: find subsets of size three of this array that sum to $(0,0,0,0)$.

Solutions.

$$
\begin{array}{lll}
(1,1,2,1) & (1,1,2,0) & (2,1,2,1) \\
(1,1,0,1) & (2,0,1,0) & (1,0,1,1) \\
(2,1,1,0) & (1,2,0,0) & (1,2,2,1) \\
(1,2,0,1) & (2,0,1,1) & (0,0,2,2)
\end{array}
$$

Solutions.

$$
\begin{array}{lll}
(1,1,2,1) & (1,1,2,0) & (2,1,2,1) \\
(1,1,0,1) & (2,0,1,0) & (1,0,1,1) \\
(2,1,1,0) & (1,2,0,0) & (1,2,2,1) \\
(1,2,0,1) & (2,0,1,1) & (0,0,2,2) \\
& \\
-(1,1,2,1),(1,0,1,1),(1,2,0,1)
\end{array}
$$

Solutions.

$$
\begin{array}{lll}
(1,1,2,1) & (1,1,2,0) & (2,1,2,1) \\
(1,1,0,1) & (2,0,1,0) & (1,0,1,1) \\
(2,1,1,0) & (1,2,0,0) & (1,2,2,1) \\
(1,2,0,1) & (2,0,1,1) & (0,0,2,2) \\
& \\
-(1,1,2,1),(1,0,1,1),(1,2,0,1) \\
-(1,1,0,1),(1,0,1,1),(1,2,2,1)
\end{array}
$$

Solutions.

$$
\begin{array}{lll}
(1,1,2,1) & (1,1,2,0) & (2,1,2,1) \\
(1,1,0,1) & (2,0,1,0) & (1,0,1,1) \\
(2,1,1,0) & (1,2,0,0) & (1,2,2,1) \\
(1,2,0,1) & (2,0,1,1) & (0,0,2,2) \\
& \\
-(1,1,2,1),(1,0,1,1),(1,2,0,1) \\
-(1,1,0,1),(1,0,1,1),(1,2,2,1) \\
-(2,1,1,0),(1,2,0,1),(0,0,2,2)
\end{array}
$$

Game of Set

