

Math 201

${\sf Section}\ {\sf F03}$

September 20, 2021

Recall the following from last time:

Recall the following from last time:

A set B is a basis for V if it
is linearly independent, and
spans V.

Recall the following from last time:

- A set B is a basis for V if it
 - is linearly independent, and
 spans V.
- If B is a basis for V, each element of V can be expressed uniquely as a linear combination of vectors in B.

Recall the following from last time:

- ► A set *B* is a *basis* for *V* if it
 - is linearly independent, and
 spans V.
- If B is a basis for V, each element of V can be expressed uniquely as a linear combination of vectors in B.
- If B = ⟨v₁,..., v_n⟩ is an ordered basis for V, then the coordinates of v ∈ V with respect to B are (a₁,..., a_n) where

$$v = a_1v_1 + \cdots + a_nv_n.$$

Exercise

Find the coordinates of $(7, -6) \in \mathbb{R}^2$ with respect to the ordered basis $B = \langle (5, 3), (1, 4) \rangle$.

Exercise

Find the coordinates of $(7, -6) \in \mathbb{R}^2$ with respect to the ordered basis $B = \langle (5, 3), (1, 4) \rangle$.

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

Examples. The following vector spaces are finite-dimensional:

 \triangleright F^n (has a basis with *n* elements)

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

- F^n (has a basis with *n* elements)
- $\mathcal{P}_d(F) = F[x]_{\leq d}$ (has a basis with d + 1 elements)

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

- F^n (has a basis with *n* elements)
- $\mathcal{P}_d(F) = F[x]_{\leq d}$ (has a basis with d + 1 elements)
- $M_{m \times n}$ (has a basis with $m \times n$ elements)

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

- Fⁿ (has a basis with n elements)
- $\mathcal{P}_d(F) = F[x]_{\leq d}$ (has a basis with d + 1 elements)
- $M_{m \times n}$ (has a basis with $m \times n$ elements)
- \mathbb{C} as a vector space over \mathbb{R} (basis $\{1, i\}$).

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

- Fⁿ (has a basis with n elements)
- $\mathcal{P}_d(F) = F[x]_{\leq d}$ (has a basis with d + 1 elements)
- $M_{m \times n}$ (has a basis with $m \times n$ elements)
- \mathbb{C} as a vector space over \mathbb{R} (basis $\{1, i\}$).
- \mathbb{C} as a vector space over \mathbb{C} (basis $\{1\}$).

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

$$\blacktriangleright \mathcal{P}(F) = F[x]$$

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

$$\mathcal{P}(F) = F[x]$$
$$\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$$

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

$$\blacktriangleright \mathcal{P}(F) = F[x]$$

$$\blacktriangleright \mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}\$$

▶ {
$$f: \mathbb{R} \to \mathbb{R}: f$$
 is continuous}

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

Examples. The following are infinite-dimensional:

$$\blacktriangleright \mathcal{P}(F) = F[x]$$

 $\blacktriangleright \mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$

•
$$\{f: \mathbb{R} \to \mathbb{R}: f \text{ is continuous}\}$$

• $\{f: \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}$

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

Examples. The following are infinite-dimensional:

$$\blacktriangleright \mathcal{P}(F) = F[x]$$

 $\blacktriangleright \mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$

•
$$\{f: \mathbb{R} \to \mathbb{R}: f \text{ is continuous}\}$$

- $\{f: \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}$
- \blacktriangleright $\mathbb R$ as a vector space over $\mathbb Q$

Definition. A vector space is *finite-dimensional* if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is *infinite-dimensional*.

Examples. The following are infinite-dimensional:

$$\blacktriangleright \mathcal{P}(F) = F[x]$$

$$\blacktriangleright \mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$$

•
$$\{f: \mathbb{R} \to \mathbb{R}: f \text{ is continuous}\}$$

• $\{f: \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\}$

- $\blacktriangleright \mathbb{R}$ as a vector space over \mathbb{Q}
- \blacktriangleright \mathbb{C} as a vector space over \mathbb{Q} .

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Definition. If V is a finite-dimensional vector space, then the *dimension* of V, denoted dim V or dim_F V, if we want to make the scalar field explicit, is the number of elements in any of its bases.

Exchange Lemma. Suppose $B = \{v_1, \ldots, v_n\}$ is a basis for a vector space V over a field F.

Exchange Lemma. Suppose $B = \{v_1, \ldots, v_n\}$ is a basis for a vector space V over a field F. Further, suppose that

$$w = a_1 v_1 + \dots + a_n v_n \in V \tag{(*)}$$

with $a_i \in F$

Exchange Lemma. Suppose $B = \{v_1, \ldots, v_n\}$ is a basis for a vector space V over a field F. Further, suppose that

$$w = a_1 v_1 + \dots + a_n v_n \in V \tag{(*)}$$

with $a_i \in F$, and such that $a_\ell \neq 0$ for some $\ell \in \{1, \ldots, n\}$.

Exchange Lemma. Suppose $B = \{v_1, \ldots, v_n\}$ is a basis for a vector space V over a field F. Further, suppose that

$$w = a_1 v_1 + \dots + a_n v_n \in V \tag{(*)}$$

with $a_i \in F$, and such that $a_\ell \neq 0$ for some $\ell \in \{1, \ldots, n\}$. Let B' be the set of vectors obtained from B by exchanging w for v_ℓ , i.e.,

$$B':=(B\setminus\{v_\ell\})\cup\{w\}.$$

Exchange Lemma. Suppose $B = \{v_1, \ldots, v_n\}$ is a basis for a vector space V over a field F. Further, suppose that

$$w = a_1 v_1 + \dots + a_n v_n \in V \tag{(*)}$$

with $a_i \in F$, and such that $a_\ell \neq 0$ for some $\ell \in \{1, \ldots, n\}$. Let B' be the set of vectors obtained from B by exchanging w for v_ℓ , i.e.,

$$B':=(B\setminus\{v_\ell\})\cup\{w\}.$$

Then B' is also a basis for V.