Math 201

Section F03

September 20, 2021

Review

Recall the following from last time:

Review

Recall the following from last time:

- A set B is a basis for V if it
- is linearly independent, and
- spans V.

Review

Recall the following from last time:

- A set B is a basis for V if it
- is linearly independent, and
- spans V.
- If B is a basis for V, each element of V can be expressed uniquely as a linear combination of vectors in B.

Review

Recall the following from last time:

- A set B is a basis for V if it
- is linearly independent, and
- spans V.
- If B is a basis for V, each element of V can be expressed uniquely as a linear combination of vectors in B.
- If $B=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ is an ordered basis for V, then the coordinates of $v \in V$ with respect to B are $\left(a_{1}, \ldots, a_{n}\right)$ where

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

Exercise

Find the coordinates of $(7,-6) \in \mathbb{R}^{2}$ with respect to the ordered basis $B=\langle(5,3),(1,4)\rangle$.

Exercise

Find the coordinates of $(7,-6) \in \mathbb{R}^{2}$ with respect to the ordered basis $B=\langle(5,3),(1,4)\rangle$.

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following vector spaces are finite-dimensional:

- F^{n} (has a basis with n elements)

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following vector spaces are finite-dimensional:

- F^{n} (has a basis with n elements)
- $\mathcal{P}_{d}(F)=F[x]_{\leq d}$ (has a basis with $d+1$ elements)

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following vector spaces are finite-dimensional:

- F^{n} (has a basis with n elements)
- $\mathcal{P}_{d}(F)=F[x]_{\leq d}$ (has a basis with $d+1$ elements)
- $M_{m \times n}$ (has a basis with $m \times n$ elements)

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following vector spaces are finite-dimensional:

- F^{n} (has a basis with n elements)
- $\mathcal{P}_{d}(F)=F[x]_{\leq d}$ (has a basis with $d+1$ elements)
- $M_{m \times n}$ (has a basis with $m \times n$ elements)
- \mathbb{C} as a vector space over \mathbb{R} (basis $\{1, i\}$).

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following vector spaces are finite-dimensional:

- F^{n} (has a basis with n elements)
- $\mathcal{P}_{d}(F)=F[x]_{\leq d}$ (has a basis with $d+1$ elements)
- $M_{m \times n}$ (has a basis with $m \times n$ elements)
- \mathbb{C} as a vector space over \mathbb{R} (basis $\{1, i\}$).
- \mathbb{C} as a vector space over \mathbb{C} (basis $\{1\}$).

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following are infinite-dimensional:

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following are infinite-dimensional:

- $\mathcal{P}(F)=F[x]$

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following are infinite-dimensional:

- $\mathcal{P}(F)=F[x]$
- $\mathbb{R}^{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following are infinite-dimensional:

- $\mathcal{P}(F)=F[x]$
- $\mathbb{R}^{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$
- $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following are infinite-dimensional:

- $\mathcal{P}(F)=F[x]$
- $\mathbb{R}^{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$
- $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$
- $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is differentiable $\}$

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following are infinite-dimensional:

- $\mathcal{P}(F)=F[x]$
- $\mathbb{R}^{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$
- $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$
- $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is differentiable $\}$
- \mathbb{R} as a vector space over \mathbb{Q}

Dimension

Definition. A vector space is finite-dimensional if it has a basis with a finite number of elements. If a vector space is not finite-dimensional, it is infinite-dimensional.

Examples. The following are infinite-dimensional:

- $\mathcal{P}(F)=F[x]$
- $\mathbb{R}^{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$
- $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$
- $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is differentiable $\}$
- \mathbb{R} as a vector space over \mathbb{Q}
- \mathbb{C} as a vector space over \mathbb{Q}.

Main Theorem

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Main Theorem

Theorem. In a finite-dimensional vector space, every basis has the same number of elements.

Definition. If V is a finite-dimensional vector space, then the dimension of V, denoted $\operatorname{dim} V$ or $\operatorname{dim}_{F} V$, if we want to make the scalar field explicit, is the number of elements in any of its bases.

Main Theorem

Exchange Lemma. Suppose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a vector space V over a field F.

Main Theorem

Exchange Lemma. Suppose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a vector space V over a field F. Further, suppose that

$$
w=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V
$$

with $a_{i} \in F$

Main Theorem

Exchange Lemma. Suppose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a vector space V over a field F. Further, suppose that

$$
w=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V
$$

with $a_{i} \in F$, and such that $a_{\ell} \neq 0$ for some $\ell \in\{1, \ldots, n\}$.

Main Theorem

Exchange Lemma. Suppose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a vector space V over a field F. Further, suppose that

$$
w=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V
$$

with $a_{i} \in F$, and such that $a_{\ell} \neq 0$ for some $\ell \in\{1, \ldots, n\}$. Let B^{\prime} be the set of vectors obtained from B by exchanging w for v_{ℓ}, i.e.,

$$
B^{\prime}:=\left(B \backslash\left\{v_{\ell}\right\}\right) \cup\{w\} .
$$

Main Theorem

Exchange Lemma. Suppose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a vector space V over a field F. Further, suppose that

$$
w=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V
$$

with $a_{i} \in F$, and such that $a_{\ell} \neq 0$ for some $\ell \in\{1, \ldots, n\}$. Let B^{\prime} be the set of vectors obtained from B by exchanging w for v_{ℓ}, i.e.,

$$
B^{\prime}:=\left(B \backslash\left\{v_{\ell}\right\}\right) \cup\{w\} .
$$

Then B^{\prime} is also a basis for V.

