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Linear dependence

Definition. A set S C V is linearly dependent if there exist
distinct! w1,...,u, € S, for some n > 1, and scalars a1, ..., an,
not all zero, such that

au + -+ apu, =0.

!Note the easily forgotten but necessary word “distinct”, here.
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Definition. A set S C V is linearly dependent if there exist
distinct! w1,...,u, € S, for some n > 1, and scalars a1, ..., an,
not all zero, such that

au + -+ apu, =0.

We call the above expression a non-trivial dependence relation
among the u;.

!Note the easily forgotten but necessary word “distinct”, here.
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Linear dependence

Is S ={(1,-1,0),(~1,0,2),(-5,3,4)} C R? linearly dependent?

Look for a, ap, a3 € R such that
a1(1,—1,0) + a»(—1,0,2) + a3(-5,3,4) = (0,0,0),
i.e., such that

(a1 — a2 — bas, —a1 + 3a3,2ax + 4a3) = (0,0,0).



Linear dependence

Proposition 1. Let S C V. Then S is linearly dependent if and
only if there exists v € S such that v is a linear combination of
vectors in S\ {v}, i.e., if and only if v € Span(S \ {v}).
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Model proof

Problem. Show S = {(1,-1,0),(-1,0,2),(0,1,1)} C R is
linearly independent.

Proof. Suppose that
a(1,-1,0) + b(—1,0,2) + ¢(0,1,1) = 0.

It follows that

a— b =0
—a +c=0
2b+c=0.
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Model proof

Problem. Show S = {(1,-1,0),(-1,0,2),(0,1,1)} C R is
linearly independent.

Proof. Suppose that
a(1,-1,0) + b(—1,0,2) + ¢(0,1,1) = 0.

It follows that

a— b =0
—a +c=0
2b+c=0.

Applying Gaussian elemination:
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we see that the only solution is a=b=c =0.
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Model linear independence proof

To prove S C V is linearly independent,
1. Suppose
auy + -+ apu, =0
for some distinct u; € S and some a; € F.
2. Show that ay = ---=a, =0.

In general, do not assume aju; + - - - + au, = 0 with some a; # 0
and derive a contradiction.



Linear independence

Problem. Show that S = {1+ x,1+ x + x?} C P2(R) = R[x]<2
is linearly independent.
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Algorithm for finding a linearly independent subset

Problem. S =((2,0,0),(0,1,0),(2,2,0),(0,3,1),(3,0,1)). Find
a linearly independent subset of S and write the remaining vectors
as linear combinations of vectors in that subset.

Solution. Look for linear relations

c1(2,0,0)+¢(0, 1,0)+c3(2,2,0)+c(0, 3, 1)+¢5(3,0,1) = (0,0, 0).
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Algorithm for finding a linearly independent subset

c1(2,0,0)4¢(0,1,0)+c3(2, 2,0)+c4(0, 3, 1)+¢c5(3,0, 1) = (0,0,0).
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Algorithm for finding a linearly independent subset

c1(2,0,0)4¢(0,1,0)+c3(2, 2,0)+c4(0, 3, 1)+¢c5(3,0, 1) = (0,0,0).

2 020 3[0 1010 32]o0

01230(/0]|~[0120 3|0

000110 0001 1]0
3

cp=-c3— =¢C, C = —2c3+3c, cC4=—cs.
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Algorithm for finding a linearly independent subset

c1(2,0,0)4¢(0,1,0)+c3(2, 2,0)+c4(0, 3, 1)+¢c5(3,0, 1) = (0,0,0).
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3
€1 = —C3 — §C5, o =—-2c3+3c5, 1= —cs.
C1 -1 —%
() -2 3
Cc3 =C3 1 + C5 0
C4 0 -1
Cs 0 1



Algorithm for finding a linearly independent subset

S =((2,0,0),(0,1,0),(2,2,0),(0,3,1),(3,0,1)).

c1(2,0,0)+¢(0, 1,0)+c3(2,2,0)+c(0, 3, 1)+¢5(3,0,1) = (0,0,0).

C1 -1 —%
o -2 3
a | =c 1 | +cs 0
Cy 0 -1
Cs 0 1

Claim: T ={(2,0,0),(0,1,0),(0,3,1)) is linearly independent
and Span T = Span(5).
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Algorithm for finding a linearly independent subset

Let S={vi,..., v} € F". To find a linearly independent
subset T of S such that Span(T) = Span(S):
> Let M be the matrix with columns vy, ..., vi.

» Compute M’, the row-reduced form of M.

» Let ji,...,jq be the indices of the pivot columns of M’ (the
ones containing the leading 1s).

> Set T ={v,...,v,}.

Note: The set T is a subset of the columns of M not of M'!
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Coordinates

Theorem. Let S C V be linearly independent, and
let v € Span(5).

Then v has a unique expression as a linear combination of
elements of S.

In other words, if v =%, aju; and v = Y°¢_; b;w; for some
nonzero a;, b; € F and some distinct u; € S and distinct w; € S,
then up to re-indexing, we have k = /¢, u; = w;, and a; = b; for
all .



