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Linear dependence

Definition. A set S ⊂ V is linearly dependent if there exist
distinct1 u1, . . . , un ∈ S, for some n ≥ 1, and scalars a1, . . . , an,
not all zero, such that

a1u1 + · · ·+ anun = 0.

We call the above expression a non-trivial dependence relation
among the ui .

1Note the easily forgotten but necessary word “distinct”, here.
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Linear dependence

Is S = {(1,−1, 0), (−1, 0, 2), (−5, 3, 4)} ⊂ R3 linearly dependent?

Look for a1, a2, a3 ∈ R such that

a1(1,−1, 0) + a2(−1, 0, 2) + a3(−5, 3, 4) = (0, 0, 0),

i.e., such that

(a1 − a2 − 5a3,−a1 + 3a3, 2a2 + 4a3) = (0, 0, 0).
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Linear dependence

Proposition 1. Let S ⊆ V . Then S is linearly dependent if and
only if there exists v ∈ S such that v is a linear combination of
vectors in S \ {v}, i.e., if and only if v ∈ Span(S \ {v}).



Linear independence

Definition. A set S ⊂ V is linearly independent if every linear
relation on distinct elements of S is trivial.

This means that
all n ≥ 1, distinct u1, . . . , un ∈ S, and ai ∈ F , if

a1u1 + · · ·+ anun = 0,

then
a1 = · · · = an = 0.
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Model proof
Problem. Show S = {(1,−1, 0), (−1, 0, 2), (0, 1, 1)} ⊂ R is
linearly independent.

Proof. Suppose that

a(1,−1, 0) + b(−1, 0, 2) + c(0, 1, 1) = 0.

It follows that
a − b = 0
−a + c = 0

2b + c = 0.

Applying Gaussian elemination: 1 −1 0 0
−1 0 1 0

0 2 1 0

 
 1 0 0 0

0 1 0 0
0 0 1 0

 ,

we see that the only solution is a = b = c = 0. �
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Model linear independence proof

To prove S ⊂ V is linearly independent,

1. Suppose
a1u1 + · · ·+ anun = 0

for some distinct ui ∈ S and some ai ∈ F .
2. Show that a1 = · · · = an = 0.

In general, do not assume a1u1 + · · ·+ anun = 0 with some ai 6= 0
and derive a contradiction.
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Linear independence

Problem. Show that S = {1 + x , 1 + x + x2} ⊂ P2(R) = R[x ]≤2
is linearly independent.



Algorithm for finding a linearly independent subset

Problem. S = ((2, 0, 0), (0, 1, 0), (2, 2, 0), (0, 3, 1), (3, 0, 1)).

Find
a linearly independent subset of S and write the remaining vectors
as linear combinations of vectors in that subset.
Solution. Look for linear relations

c1(2, 0, 0)+c2(0, 1, 0)+c3(2, 2, 0)+c4(0, 3, 1)+c5(3, 0, 1) = (0, 0, 0).

 2 0 2 0 3 0
0 1 2 3 0 0
0 0 0 1 1 0

  
 1 0 1 0 3

2 0
0 1 2 0 −3 0
0 0 0 1 1 0
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3
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Algorithm for finding a linearly independent subset

S = ((2, 0, 0), (0, 1, 0), (2, 2, 0), (0, 3, 1), (3, 0, 1)).

c1(2, 0, 0)+c2(0, 1, 0)+c3(2, 2, 0)+c4(0, 3, 1)+c5(3, 0, 1) = (0, 0, 0).
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Claim: T = {(2, 0, 0), (0, 1, 0), (0, 3, 1)) is linearly independent
and Span T = Span(S).



Algorithm for finding a linearly independent subset

Let S = {v1, . . . , vk} ∈ F n. To find a linearly independent
subset T of S such that Span(T ) = Span(S):

I Let M be the matrix with columns v1, . . . , vk .
I Compute M ′, the row-reduced form of M.
I Let j1, . . . , jd be the indices of the pivot columns of M ′ (the

ones containing the leading 1s).
I Set T = {vj1 , . . . , vjd}.

Note: The set T is a subset of the columns of M not of M ′!
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Coordinates

Theorem. Let S ⊆ V be linearly independent, and
let v ∈ Span(S).

Then v has a unique expression as a linear combination of
elements of S.

In other words, if v =
∑k

i=1 aiui and v =
∑`

i=1 biwi for some
nonzero ai , bi ∈ F and some distinct ui ∈ S and distinct wi ∈ S,
then up to re-indexing, we have k = `, ui = wi , and ai = bi for
all i .
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