Math 201

Section F03

September 13, 2021

From last time

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a linear combination of vectors in S if there exist $u_{1}, \ldots, u_{n} \in S$ and $a_{1}, \ldots, a_{n} \in F$ (for some n) such that

$$
v=\sum_{i=1}^{n} a_{i} u_{i}=a_{1} u_{1}+\cdots+a_{n} u_{n} .
$$

From last time

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a linear combination of vectors in S if there exist $u_{1}, \ldots, u_{n} \in S$ and $a_{1}, \ldots, a_{n} \in F$ (for some n) such that

$$
v=\sum_{i=1}^{n} a_{i} u_{i}=a_{1} u_{1}+\cdots+a_{n} u_{n}
$$

Definition. Let S be a nonempty subset of V. The span of S, denoted $\operatorname{Span}(S)$, is the set of all linear combinations of elements of S. By convention $\operatorname{Span} \emptyset:=\{0\}$, and we say that 0 is the empty linear combination.

Vector space of polynomials

$$
P_{k}(F)=F[x]_{\leq 2}=\operatorname{Span}\left\{1, x, \ldots, x^{k}\right\} .
$$

Vector space of polynomials

$$
P_{k}(F)=F[x]_{\leq 2}=\operatorname{Span}\left\{1, x, \ldots, x^{k}\right\}
$$

Now let

$$
S=\left\{x^{2}+3 x-2,2 x^{2}+5 x-3\right\} \subset \mathbb{R}[x]_{\leq 2}
$$

Vector space of polynomials

$$
P_{k}(F)=F[x]_{\leq 2}=\operatorname{Span}\left\{1, x, \ldots, x^{k}\right\}
$$

Now let

$$
S=\left\{x^{2}+3 x-2,2 x^{2}+5 x-3\right\} \subset \mathbb{R}[x]_{\leq 2}
$$

Is $-x^{2}-4 x+4 \in \operatorname{Span}(S) ?$

Characteristic functions

Definition. Let S be any set, and consider the function space $F^{S}:=\{f: S \rightarrow F\}$.

Characteristic functions

Definition. Let S be any set, and consider the function space $F^{S}:=\{f: S \rightarrow F\}$. For each $s \in S$, define the characteristic function $\chi_{s} \in F^{S}$ for s by

$$
\begin{aligned}
\chi_{s}: S & \rightarrow F \\
t & \mapsto \begin{cases}1 & \text { if } t=s \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Homogeneous linear equations

Definition. A linear equation of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ where $a_{i} \in F$ is called homogeneous.

Homogeneous linear equations

Definition. A linear equation of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ where $a_{i} \in F$ is called homogeneous.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^{n}.

Homogeneous linear equations

Definition. A linear equation of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ where $a_{i} \in F$ is called homogeneous.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^{n}.

Proof. Let X be the solution set to a system of homogeneous linear equations.

Homogeneous linear equations

Definition. A linear equation of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ where $a_{i} \in F$ is called homogeneous.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^{n}.

Proof. Let X be the solution set to a system of homogeneous linear equations.

1. Is $0 \in X$?

Homogeneous linear equations

Definition. A linear equation of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ where $a_{i} \in F$ is called homogeneous.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^{n}.

Proof. Let X be the solution set to a system of homogeneous linear equations.

1. Is $0 \in X$?
2. Given $u, v \in X$ and $\lambda \in F$, is $u+\lambda v \in X$?

Generating sets of homogeneous systems

The vector form for the solution to a system of homogeneous linear equations yields a set of generators for the solution space.

