

Math 201

Section F03

September 13, 2021

From last time

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a *linear combination* of vectors in S if there exist $u_1, \ldots, u_n \in S$ and $a_1, \ldots, a_n \in F$ (for some n) such that

$$v = \sum_{i=1}^n a_i u_i = a_1 u_1 + \dots + a_n u_n$$

From last time

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a *linear combination* of vectors in S if there exist $u_1, \ldots, u_n \in S$ and $a_1, \ldots, a_n \in F$ (for some n) such that

$$v=\sum_{i=1}^n a_i u_i=a_1u_1+\cdots+a_nu_n.$$

Definition. Let *S* be a nonempty subset of *V*. The *span* of *S*, denoted Span(S), is the set of all linear combinations of elements of *S*. By convention $\text{Span}\emptyset := \{0\}$, and we say that 0 is the *empty linear combination*.

Vector space of polynomials

$$P_k(F) = F[x]_{\leq 2} = \text{Span}\{1, x, \dots, x^k\}.$$

Vector space of polynomials

$$P_k(F) = F[x]_{\leq 2} = \operatorname{Span}\{1, x, \dots, x^k\}.$$

Now let

$$S = \left\{ x^2 + 3x - 2, 2x^2 + 5x - 3 \right\} \subset \mathbb{R}[x]_{\leq 2}.$$

Vector space of polynomials

$$P_k(F) = F[x]_{\leq 2} = \operatorname{Span}\{1, x, \dots, x^k\}.$$

Now let

ls

$$S = \left\{x^2 + 3x - 2, 2x^2 + 5x - 3
ight\} \subset \mathbb{R}[x]_{\leq 2}.$$

 $-x^2 - 4x + 4 \in \mathrm{Span}(S)?$

Definition. Let S be any set, and consider the function space $F^{S} := \{f : S \to F\}.$

Definition. Let *S* be any set, and consider the function space $F^S := \{f : S \to F\}$. For each $s \in S$, define the *characteristic* function $\chi_s \in F^S$ for *s* by

$$\chi_s \colon S o F$$

 $t \mapsto egin{cases} 1 & ext{if } t = s \ 0 & ext{otherwise.} \end{cases}$

Definition. A linear equation of the form $a_1x_1 + \cdots + a_nx_n = 0$ where $a_i \in F$ is called *homogeneous*.

Definition. A linear equation of the form $a_1x_1 + \cdots + a_nx_n = 0$ where $a_i \in F$ is called *homogeneous*.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^n .

Definition. A linear equation of the form $a_1x_1 + \cdots + a_nx_n = 0$ where $a_i \in F$ is called *homogeneous*.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^n .

Proof. Let X be the solution set to a system of homogeneous linear equations.

Definition. A linear equation of the form $a_1x_1 + \cdots + a_nx_n = 0$ where $a_i \in F$ is called *homogeneous*.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^n .

Proof. Let X be the solution set to a system of homogeneous linear equations.

1. Is 0 ∈ *X*?

Definition. A linear equation of the form $a_1x_1 + \cdots + a_nx_n = 0$ where $a_i \in F$ is called *homogeneous*.

Proposition. The solution set to a system of homogeneous linear equations in n unknowns and with coefficients in F is a subspace of F^n .

Proof. Let X be the solution set to a system of homogeneous linear equations.

1. Is 0 ∈ *X*?

2. Given $u, v \in X$ and $\lambda \in F$, is $u + \lambda v \in X$?

Generating sets of homogeneous systems

The vector form for the solution to a system of homogeneous linear equations yields a set of generators for the solution space.