

Math 201

${\sf Section}\ {\sf F03}$

September 17, 2021

Bases

Definition. A subset $B \subset V$ is a *basis* if it is linearly independent and spans V. An *ordered basis* is a basis whose elements have been listed as a sequence: $B = \langle b_1, b_2, \ldots \rangle$.

Bases

Definition. A subset $B \subset V$ is a *basis* if it is linearly independent and spans V. An *ordered basis* is a basis whose elements have been listed as a sequence: $B = \langle b_1, b_2, \ldots \rangle$.

Remarks.

Our text uses "basis" to mean "ordered basis".

Bases

Definition. A subset $B \subset V$ is a *basis* if it is linearly independent and spans V. An *ordered basis* is a basis whose elements have been listed as a sequence: $B = \langle b_1, b_2, \ldots \rangle$.

Remarks.

- Our text uses "basis" to mean "ordered basis".
- It turns out that every vector space has a basis. (Although, infinite dimensional vector spaces may not have countable bases.

Proved last time: Let $S \subseteq V$. Then S is linearly dependent if and only if there exists $v \in S$ such that v is a linear combination of vectors in $S \setminus \{v\}$, i.e., if and only if $v \in \text{Span}(S \setminus \{v\})$.

Proved last time: Let $S \subseteq V$. Then S is linearly dependent if and only if there exists $v \in S$ such that v is a linear combination of vectors in $S \setminus \{v\}$, i.e., if and only if $v \in \text{Span}(S \setminus \{v\})$.

It follows that

Proposition. Any finite subset S of V has a linearly independent subset with the same span. In other words, if S is a finite set, then there is a subset of S that is a basis for Span(S).

Proposition. If $T \subset V$ is linearly independent and $v \in V \setminus T$, then $T \cup \{v\}$ is linearly dependent if and only if $v \in \text{Span}(T)$.

Proposition. If $T \subset V$ is linearly independent and $v \in V \setminus T$, then $T \cup \{v\}$ is linearly dependent if and only if $v \in \text{Span}(T)$.

It again follows that

Proposition. Any finite subset S of V has a linearly independent subset with the same span. In other words, if S is a finite set, then there is a subset of S that is a basis for Span(S).

Proposition 1. If B is a basis for V, then every element of V can be expressed uniquely as a linear combination of elements of B.

Proposition 1. If B is a basis for V, then every element of V can be expressed uniquely as a linear combination of elements of B.

Proof. Since *B* is linearly independent, we've already seen that every element in Span(B) can be written uniquely as a linear combination of elements of *B*.

Proposition 1. If B is a basis for V, then every element of V can be expressed uniquely as a linear combination of elements of B.

Proof. Since *B* is linearly independent, we've already seen that every element in Span(B) can be written uniquely as a linear combination of elements of *B*.

Since B is a basis, Span(B) = V.

$$V = (\mathbb{Z}/3\mathbb{Z})^3$$

$$V = (\mathbb{Z}/3\mathbb{Z})^3$$

$$W = \{(x_1, x_2, x_3) \in V : x_1 + x_2 + x_3 = 0\}$$

$$V = (\mathbb{Z}/3\mathbb{Z})^3$$

$$W = \{ (x_1, x_2, x_3) \in V : x_1 + x_2 + x_3 = 0 \}$$
$$= \{ (-x_2 - x_3, x_2, x_3) : x_2, x_3 \in \mathbb{Z}/3\mathbb{Z} \}$$

$$V = (\mathbb{Z}/3\mathbb{Z})^3$$

$$W = \{ (x_1, x_2, x_3) \in V : x_1 + x_2 + x_3 = 0 \}$$
$$= \{ (-x_2 - x_3, x_2, x_3) : x_2, x_3 \in \mathbb{Z}/3\mathbb{Z} \}$$

 $W = \{(0,0,0),(2,1,0),(1,2,0),(2,0,1),(1,1,1),(0,2,1),$ $(1,0,2),(0,1,2),(2,2,2)\}$

Definition. Let $B = \langle v_1, \ldots, v_n \rangle$ be an ordered basis for V. Given $v \in V$, there are unique $a_1, \ldots, a_n \in F$ such that

$$v = a_1v_1 + \cdots + a_nv_n.$$

Definition. Let $B = \langle v_1, \ldots, v_n \rangle$ be an ordered basis for V. Given $v \in V$, there are unique $a_1, \ldots, a_n \in F$ such that

$$v = a_1v_1 + \cdots + a_nv_n.$$

The coordinates of v with respect to the basis B are the components of the vector $(a_1, \ldots, a_n) \in F^n$. We write

$$[v]_B = (a_1,\ldots,a_n).$$