Math 201

Section F03

September 17, 2021

Bases

Definition. A subset $B \subset V$ is a basis if it is linearly independent and spans V. An ordered basis is a basis whose elements have been listed as a sequence: $B=\left\langle b_{1}, b_{2}, \ldots\right\rangle$.

Bases

Definition. A subset $B \subset V$ is a basis if it is linearly independent and spans V. An ordered basis is a basis whose elements have been listed as a sequence: $B=\left\langle b_{1}, b_{2}, \ldots\right\rangle$.

Remarks.

- Our text uses "basis" to mean "ordered basis".

Bases

Definition. A subset $B \subset V$ is a basis if it is linearly independent and spans V. An ordered basis is a basis whose elements have been listed as a sequence: $B=\left\langle b_{1}, b_{2}, \ldots\right\rangle$.

Remarks.

- Our text uses "basis" to mean "ordered basis".
- It turns out that every vector space has a basis. (Although, infinite dimensional vector spaces may not have countable bases.

Existence of basis

Proved last time: Let $S \subseteq V$. Then S is linearly dependent if and only if there exists $v \in S$ such that v is a linear combination of vectors in $S \backslash\{v\}$, i.e., if and only if $v \in \operatorname{Span}(S \backslash\{v\})$.

Existence of basis

Proved last time: Let $S \subseteq V$. Then S is linearly dependent if and only if there exists $v \in S$ such that v is a linear combination of vectors in $S \backslash\{v\}$, i.e., if and only if $v \in \operatorname{Span}(S \backslash\{v\})$.

It follows that
Proposition. Any finite subset S of V has a linearly independent subset with the same span. In other words, if S is a finite set, then there is a subset of S that is a basis for $\operatorname{Span}(S)$.

Existence of basis

Proposition. If $T \subset V$ is linearly independent and $v \in V \backslash T$, then $T \cup\{v\}$ is linearly dependent if and only if $v \in \operatorname{Span}(T)$.

Existence of basis

Proposition. If $T \subset V$ is linearly independent and $v \in V \backslash T$, then $T \cup\{v\}$ is linearly dependent if and only if $v \in \operatorname{Span}(T)$.

It again follows that
Proposition. Any finite subset S of V has a linearly independent subset with the same span. In other words, if S is a finite set, then there is a subset of S that is a basis for $\operatorname{Span}(S)$.

Coordinates

Proposition 1. If B is a basis for V, then every element of V can be expressed uniquely as a linear combination of elements of B.

Coordinates

Proposition 1. If B is a basis for V, then every element of V can be expressed uniquely as a linear combination of elements of B.

Proof. Since B is linearly independent, we've already seen that every element in $\operatorname{Span}(B)$ can be written uniquely as a linear combination of elements of B.

Coordinates

Proposition 1. If B is a basis for V, then every element of V can be expressed uniquely as a linear combination of elements of B.

Proof. Since B is linearly independent, we've already seen that every element in $\operatorname{Span}(B)$ can be written uniquely as a linear combination of elements of B.

Since B is a basis, $\operatorname{Span}(B)=V$.

Example

$$
V=(\mathbb{Z} / 3 \mathbb{Z})^{3}
$$

Example

$$
V=(\mathbb{Z} / 3 \mathbb{Z})^{3}
$$

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+x_{2}+x_{3}=0\right\}
$$

Example

$$
V=(\mathbb{Z} / 3 \mathbb{Z})^{3}
$$

$$
\begin{aligned}
W & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+x_{2}+x_{3}=0\right\} \\
& =\left\{\left(-x_{2}-x_{3}, x_{2}, x_{3}\right): x_{2}, x_{3} \in \mathbb{Z} / 3 \mathbb{Z}\right\}
\end{aligned}
$$

Example

$$
V=(\mathbb{Z} / 3 \mathbb{Z})^{3}
$$

$$
\begin{aligned}
W & =\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+x_{2}+x_{3}=0\right\} \\
& =\left\{\left(-x_{2}-x_{3}, x_{2}, x_{3}\right): x_{2}, x_{3} \in \mathbb{Z} / 3 \mathbb{Z}\right\}
\end{aligned}
$$

$$
W=\{(0,0,0),(2,1,0),(1,2,0),(2,0,1),(1,1,1),(0,2,1),
$$

$$
(1,0,2),(0,1,2),(2,2,2)\}
$$

Coordinates

Definition. Let $B=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ be an ordered basis for V. Given $v \in V$, there are unique $a_{1}, \ldots, a_{n} \in F$ such that

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

Coordinates

Definition. Let $B=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ be an ordered basis for V. Given $v \in V$, there are unique $a_{1}, \ldots, a_{n} \in F$ such that

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

The coordinates of v with respect to the basis B are the components of the vector $\left(a_{1}, \ldots, a_{n}\right) \in F^{n}$. We write

$$
[v]_{B}=\left(a_{1}, \ldots, a_{n}\right) .
$$

