

Math 201

Section F03

September 8, 2021

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication:

$$+: F \times V \to V$$
$$(a, v) \mapsto av$$

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

such that the following hold for all $x, y, z \in V$ and $a, b \in F$:

1. x + y = y + x (commutativity of addition).

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

1.
$$x + y = y + x$$
 (commutativity of addition).
2. $(x + y) + z = (x + y) + z$ (associativity of addition)

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

1.
$$x + y = y + x$$
 (commutativity of addition).

- 2. (x + y) + z = (x + y) + z (associativity of addition).
- 3. There exists $0 \in V$ such that 0 + w = w for all $w \in V$.

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

1.
$$x + y = y + x$$
 (commutativity of addition).

- 2. (x + y) + z = (x + y) + z (associativity of addition).
- 3. There exists $0 \in V$ such that 0 + w = w for all $w \in V$.
- 4. There exists $-x \in V$ such that x + (-x) = 0.

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

1.
$$x + y = y + x$$
 (commutativity of addition).

- 2. (x + y) + z = (x + y) + z (associativity of addition).
- 3. There exists $0 \in V$ such that 0 + w = w for all $w \in V$.
- 4. There exists $-x \in V$ such that x + (-x) = 0.
- 5. For $1 \in F$, we have $1 \cdot x = x$.

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

such that the following hold for all $x, y, z \in V$ and $a, b \in F$:

1.
$$x + y = y + x$$
 (commutativity of addition).

- 2. (x + y) + z = (x + y) + z (associativity of addition).
- 3. There exists $0 \in V$ such that 0 + w = w for all $w \in V$.
- 4. There exists $-x \in V$ such that x + (-x) = 0.

5. For
$$1 \in F$$
, we have $1 \cdot x = x$.

6. (ab)x = a(bx) (associativity of scalar multiplication).

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

such that the following hold for all $x, y, z \in V$ and $a, b \in F$:

1.
$$x + y = y + x$$
 (commutativity of addition).
2. $(x + y) + z = (x + y) + z$ (associativity of addition).

3. There exists $0 \in V$ such that 0 + w = w for all $w \in V$.

. 、

4. There exists $-x \in V$ such that x + (-x) = 0.

5. For
$$1 \in F$$
, we have $1 \cdot x = x$.

6.
$$(ab)x = a(bx)$$
 (associativity of scalar multiplication).
7. $a(x + y) = ax + ay$ (distributivity).

vector addition:
$$+: V \times V \rightarrow V$$

 $(v, w) \mapsto v + w$

scalar multiplication: $+: F \times V \rightarrow V$ $(a, v) \mapsto av$

1.
$$x + y = y + x$$
 (commutativity of addition).
2. $(x + y) + z = (x + y) + z$ (associativity of addition).
3. There exists $0 \in V$ such that $0 + w = w$ for all $w \in V$.
4. There exists $-x \in V$ such that $x + (-x) = 0$.
5. For $1 \in F$, we have $1 \cdot x = x$.
6. $(ab)x = a(bx)$ (associativity of scalar multiplication).
7. $a(x + y) = ax + ay$ (distributivity).
8. $(a + b)x = ax + bx$ (distributivity).

Most important example of a vector space

$$F^n = \underbrace{F \times \cdots \times F}_{n \text{ times}} = \{(a_1, \dots, a_n) : a_i \in F \text{ for } i = 1, \dots, n\}$$

Most important example of a vector space

$$F^n = \underbrace{F \times \cdots \times F}_{n \text{ times}} = \{(a_1, \dots, a_n) : a_i \in F \text{ for } i = 1, \dots, n\}$$

Linear structure:

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) := (a_1 + b_1, \ldots, a_n + b_n)$$

 $c(a_1, \ldots, a_n) := (ca_1, \ldots, ca_n)$

for all $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in F^n$ and $c \in F$.

The set of $m \times n$ matrices with entries in the field *F*:

$$M_{m \times n} := \left\{ \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ & \vdots & \\ a_{m1} & \dots & a_{mn} \end{array} \right) : a_{ij} \in F \text{ for all } i, j \right\}.$$

has a standard vector space structure.

The set of $m \times n$ matrices with entries in the field *F*:

$$M_{m \times n} := \left\{ \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ & \vdots & \\ & a_{m1} & \dots & a_{mn} \end{array} \right) : a_{ij} \in F \text{ for all } i, j \right\}.$$

has a standard vector space structure.

Given $A \in M_{m \times n}$, denote the entry in its *i*-the row and *j*-th column by A_{ij} .

The set of $m \times n$ matrices with entries in the field *F*:

$$M_{m \times n} := \left\{ \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ & \vdots & \\ & a_{m1} & \dots & a_{mn} \end{array} \right) : a_{ij} \in F \text{ for all } i, j \right\}.$$

has a standard vector space structure.

Given $A \in M_{m \times n}$, denote the entry in its *i*-the row and *j*-th column by A_{ij} .

Define the vector space operations on $M_{m \times n}$ as follows:

The set of $m \times n$ matrices with entries in the field *F*:

$$M_{m \times n} := \left\{ \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ & \vdots & \\ & a_{m1} & \dots & a_{mn} \end{array} \right) : a_{ij} \in F \text{ for all } i, j \right\}.$$

has a standard vector space structure.

Given $A \in M_{m \times n}$, denote the entry in its *i*-the row and *j*-th column by A_{ij} .

Define the vector space operations on $M_{m \times n}$ as follows:

addition: $(A + B)_{ij} := A_{ij} + B_{ij}$ for all $A, B \in M_{m \times n}$;

The set of $m \times n$ matrices with entries in the field *F*:

$$M_{m \times n} := \left\{ \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ & \vdots & \\ & a_{m1} & \dots & a_{mn} \end{array} \right) : a_{ij} \in F \text{ for all } i, j \right\}.$$

has a standard vector space structure.

Given $A \in M_{m \times n}$, denote the entry in its *i*-the row and *j*-th column by A_{ij} .

Define the vector space operations on $M_{m \times n}$ as follows:

addition: $(A + B)_{ij} := A_{ij} + B_{ij}$ for all $A, B \in M_{m \times n}$; scalar multiplication: $(cA)_{ij} := cA_{ij}$ for all $A \in M_{m \times n}$ and $c \in F$.

Function spaces

Let S be any set, and let F be any field. Define

 $F^{S} := \{ \text{functions } f : S \to F \} .$

Function spaces

Let S be any set, and let F be any field. Define

$$F^{S} := \{ \text{functions } f : S \to F \}.$$

Vector space structure on F^S : for $f, g \in F$ and $t \in F$, define f + g and tf by

Function spaces

Let S be any set, and let F be any field. Define

$$F^{S} := \{ \text{functions } f : S \to F \}.$$

Vector space structure on F^S : for $f, g \in F$ and $t \in F$, define f + g and tf by

addition:
$$(f+g)(s) := f(s) + g(s)$$

scalar multiplication: $(tf)(s) := t(f(s))$

Definition. A subset $W \subseteq V$ of a vector space V is a *subspace* of V is it is a vector space with the operations of addition and scalar multiplication inherited from V.