

Math 201

Section F03

September 10, 2021

Linear combinations of vectors

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a *linear combination* of vectors in S if there exist $u_1, \ldots, u_n \in S$ and $a_1, \ldots, a_n \in F$ (for some n) such that

$$v = \sum_{i=1}^n a_i u_i = a_1 u_1 + \dots + a_n u_n$$

Linear combinations of vectors

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a *linear combination* of vectors in S if there exist $u_1, \ldots, u_n \in S$ and $a_1, \ldots, a_n \in F$ (for some n) such that

$$v=\sum_{i=1}^n a_i u_i=a_1u_1+\cdots+a_nu_n.$$

Definition. Let S be a nonempty subset of V. The span of S, denoted Span(S), is the set of all linear combinations of elements of S.

Linear combinations of vectors

Definition. Let S be a nonempty subset of V. Then $v \in V$ is a *linear combination* of vectors in S if there exist $u_1, \ldots, u_n \in S$ and $a_1, \ldots, a_n \in F$ (for some n) such that

$$v=\sum_{i=1}^n a_i u_i=a_1u_1+\cdots+a_nu_n.$$

Definition. Let S be a nonempty subset of V. The span of S, denoted Span(S), is the set of all linear combinations of elements of S.

By convention $\operatorname{Span} \emptyset := \{0\}$, and we say that 0 is the *empty linear combination*.

Definition. A subset $W \subseteq V$ is a *subspace* of V if W is a vector space itself with the operations of addition and scalar multiplication inherited from V.

Definition. A subset $W \subseteq V$ is a *subspace* of V if W is a vector space itself with the operations of addition and scalar multiplication inherited from V.

Proposition. $W \subseteq V$ is a subspace of V if and only if 1. $0 \in W$

Definition. A subset $W \subseteq V$ is a *subspace* of V if W is a vector space itself with the operations of addition and scalar multiplication inherited from V.

Proposition. $W \subseteq V$ is a subspace of V if and only if

1. $0 \in W$

2. *W* is closed under addition $(x, y \in W \Rightarrow x + y \in W)$

Definition. A subset $W \subseteq V$ is a *subspace* of V if W is a vector space itself with the operations of addition and scalar multiplication inherited from V.

Proposition. $W \subseteq V$ is a subspace of V if and only if

- 1. $0 \in W$
- 2. W is closed under addition $(x, y \in W \Rightarrow x + y \in W)$
- 3. W is closed under scalar multiplication ($c \in F$ and $w \in W \Rightarrow cw \in W$).

Proposition. $W \subseteq V$ is a subspace of V if and only if 1. $0 \in W$

Example

Proposition. $W \subseteq V$ is a subspace of V if and only if

- 1. $0 \in W$
- 2. W is closed under addition $(x, y \in W \Rightarrow x + y \in W)$

Example

Proposition. $W \subseteq V$ is a subspace of V if and only if

- 1. $0 \in W$
- 2. W is closed under addition $(x, y \in W \Rightarrow x + y \in W)$
- 3. W is closed under scalar multiplication ($c \in F$ and $w \in W \Rightarrow cw \in W$).

Example

Proposition. $W \subseteq V$ is a subspace of V if and only if

- 1. $0 \in W$
- 2. W is closed under addition $(x, y \in W \Rightarrow x + y \in W)$
- 3. W is closed under scalar multiplication ($c \in F$ and $w \in W \Rightarrow cw \in W$).

Proposition. If W_1 and W_2 are subspaces of V, so is $W_1 \cap W_2$.

1. $\operatorname{Span}(S)$ is a subspace of V.

- 1. Span(S) is a subspace of V.
- If W ⊆ V is a subspace and S ⊆ W, then Span(S) ⊆ W. (In other words: a subspace is closed under the process of taking linear combinations of its elements.)

- 1. Span(S) is a subspace of V.
- If W ⊆ V is a subspace and S ⊆ W, then Span(S) ⊆ W. (In other words: a subspace is closed under the process of taking linear combinations of its elements.)
- 3. Every subspace of V is the span of some subset of V.

- 1. Span(S) is a subspace of V.
- If W ⊆ V is a subspace and S ⊆ W, then Span(S) ⊆ W. (In other words: a subspace is closed under the process of taking linear combinations of its elements.)
- 3. Every subspace of V is the span of some subset of V.

See the lecture notes for today for a proof.

Generating sets

Definition. A subset $S \subseteq V$ generates a subspace W if Span(S) = W.