Math 201

Section F03

September 3, 2021

Real n-space

$$
\mathbb{R}^{n}:=\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text {-factors }}:=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R} \text { for } i=1, \ldots, n\right\} .
$$

Real n-space

$$
\mathbb{R}^{n}:=\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text {-factors }}:=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R} \text { for } i=1, \ldots, n\right\} .
$$

Addition $+: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right),
$$

Real n-space

$$
\mathbb{R}^{n}:=\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text {-factors }}:=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R} \text { for } i=1, \ldots, n\right\} .
$$

Addition $+: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right),
$$

Scalar multiplication $\cdot: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\lambda\left(x_{1}, \ldots, x_{n}\right):=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.

Interpretation of elements of \mathbb{R}^{n}

Elements of \mathbb{R}^{n} can be thought of as points or as arrows (vectors).

Lines in \mathbb{R}^{n}

Definition. Let $p, v \in \mathbb{R}^{n}$, with $v \neq(0, \ldots, 0)$.

Lines in \mathbb{R}^{n}

Definition. Let $p, v \in \mathbb{R}^{n}$, with $v \neq(0, \ldots, 0)$. Then

$$
\{p+\lambda v: \lambda \in \mathbb{R}\}
$$

is the line in \mathbb{R}^{n} in the direction of v and passing through the point p.

Lines in \mathbb{R}^{n}

Exercise. Show that if q is any point on the line $\{p+\lambda v: \lambda \in \mathbb{R}\}$ and w is any nonzero scalar multiple of v, then

$$
\{q+\lambda w: \lambda \in \mathbb{R}\}=\{p+\lambda v: \lambda \in \mathbb{R}\}
$$

Example

Give a parametrization of the line through the points $(1,2,0)$ and $(0,1,1)$.

Example

A line in \mathbb{R}^{2} can always be expressed as the solution set to a single linear equation.

Find such an equation for the line

$$
L:=\{(3,2)+\lambda(1,5): \lambda \in \mathbb{R}\} .
$$

Example

A line in \mathbb{R}^{3} is always the solution set to a system of two linear equations.

Example

A line in \mathbb{R}^{3} is always the solution set to a system of two linear equations.

Do so for the line through the points $(1,0,2)$ and $(3,1,-1)$, parametrized by

$$
t \mapsto(1,0,2)+t((3,1,-1)-(1,0,2))=(1,0,2)+t(2,1,-3)
$$

Planes in \mathbb{R}^{n}

Definition. Let $p, v, w \in \mathbb{R}^{n}$. Suppose that v and w are nonzero and that neither is a scalar multiple of the other.

Planes in \mathbb{R}^{n}

Definition. Let $p, v, w \in \mathbb{R}^{n}$. Suppose that v and w are nonzero and that neither is a scalar multiple of the other. Then

$$
\left\{p+\lambda v+\mu w:(\lambda, \mu) \in \mathbb{R}^{2}\right\}
$$

is the plane in \mathbb{R}^{n} containing p and with directions v and w.

Example

Find the plane P through the points $(0,2,-1),(4,2,1)$, and $(1,0,1)$. Describe both parametrically and as the solution set to a single linear equation.

