MATH 113: DISCRETE STRUCTURES HOMEWORK DUE FRIDAY WEEK 3

Problem 1. Suppose that $f: A \to B$ is a surjective function. Define a relation \asymp_f on A so that $a \asymp_f b$ if and only if f(a) = f(b).

- (a) Prove that \leq_f is an equivalence relation.
- (b) Determine the number of equivalence classes under \approx_f .

Problem 2. Suppose that we are playing a game in which we roll three six-sided dice (with sides labeled 1, 2, ..., 6). Declare two rolls equivalent if their sums match. (Formally, a roll can be thought of as an ordered 3-tuple (a, b, c) where $a, b, c \in \{1, ..., 6\}$, and our relation is $(a, b, c) \sim (a', b', c')$ if and only if a + b + c = a' + b' + c'.)

- (a) Prove that this is indeed an equivalence relation.
- (b) Determine the number of equivalence classes.
- (c) Are all of the equivalence classes of the same size?

Template for proving a relation is an equivalence relation.

Theorem. Define a relation \sim on a set A by blah, blah. Then \sim is an equivalence relation.

Proof. *Reflexivity.* For each $a \in A$, we have $a \sim a$ since blah, blah, blah. Therefore, \sim is reflexive. *Symmetry.* Suppose that $a \sim b$. Then, blah, blah, blah. It follows that $b \sim a$. Therefore \sim is symmetric.

Transitivity. Suppose that $a \sim b$ and $b \sim c$. Since blah, blah, it follows that $a \sim c$. Therefore, \sim is transitive.

Since \sim is reflexive, symmetric, and transitive, it follows that \sim is an equivalence relation.