PROBLEM 1. Suppose that $a \in \mathbb{R}^{\mathbb{N}}$ is a polynomial sequence of degree 4. Use the following table of differences to determine a formula for a_n .

a _n	0		0		4		12		72		
$\Delta[a]_n$		0		4		8		60		• • •	
$\Delta^2[a]_n$			4		4		52		• • •		
$\Delta^3[a]_n$				0		48		• • •			
a_n $\Delta[a]_n$ $\Delta^2[a]_n$ $\Delta^3[a]_n$ $\Delta^4[a]_n$					48						

PROBLEM 2. With your group, choose a "random" polynomial p of degree at most 5. Prepare a table of the values p(n) for n = 0, 1, ..., 6. Swap tables of values with another group and then reconstruct each others polynomials. Here is an example of https://sagecell.sagemath.org/ code that might help:

 $f(x) = x^5 + 5 x^4 - 2 x^3 + x^2 + 3 x + 7$ [f(i) for i in [0..6]]

Output:

[7, 15, 113, 619, 2211, 6047, 13885]

PROBLEM 3.

- (i) Fix *r* ≥ 0. For *n* ≥ 0 define the sequence whose *n*-th term is
 a_n = ∑ⁿ_{k=0} k^r. Prove that (*a_n*)[∞]_{n=0} is a degree *r* + 1 polynomial
 sequence. (Hint: our reading implies that is suffices to show that
 Δ[*a*]_n is a polynomial sequence of degree *r*.)
- (ii) Consider the case r = 3. Use a table of differences to determine a polynomial expression for

$$a_n = \sum_{k=0}^n k^3.$$

Fun fact: you can write that polynomial as the square of a single binomial coefficient involving *n*.

Problem 4.

(i) Prove that $3 | n^3 + 2n$ for all $n \in \mathbb{N}$ in two ways: (1) show $n^3 + 2n = 0 \pmod{3}$ by checking all possibilities for $n \pmod{3}$, and (2) by using a table of differences to write $n^3 + 2n$ as a sum of $\binom{n}{k}$ s.

- (ii) Suppose that f is a numerical polynomial of degree d. Prove that d divides f(n) for all $n \in \mathbb{N}$ if and only if d divides $\Delta^k[f]_0$ for all $k \ge 0$. (Hints: one direction follows immediately from Theorem 89, and the other follows by considering what the table of differences would look like if d divides f(n) for all n.)
- (iii) Use the part (ii) to determine the largest number dividing $n^5 n$ for all $n \in \mathbb{N}$?