PROBLEM 1.

- (i) Factor 336 and use the factorization to compute φ(336), i.e., the number of positive integers *a* less than 336 such that gcd(*a*, 336) = 1.
- (ii) What is the remainder of $5^{960000290}$ upon division by 336?

PROBLEM 2 (Sketch of probabilistic proof of Euler's formula for the totient function.). Let $n = p_1^{e_1} \cdots p_k^{e_k}$ be the prime factorization of the positive integer n. Let $[n] := \{1, \ldots, n\}$ be our sample space with uniform distribution. For $i = 1, \ldots, k$, define the event E_i to be the set of $r \in [n]$ such that $p_i \nmid r$.

- (i) What are the sets E_i in the case n = 60? What are the probabilities $P(E_i)$.
- (ii) Back to the case of general n, what is $P(E_i)$ for each i?
- (iii) Let *R* be the collection of $r \in [n]$ which are relatively prime to *n*. Check that $R = E_1 \cap E_2 \cap \cdots \cap E_k$.
- (iv) It turns out that $P(R) = P(E_1) \cdots P(E_k)$. Use this fact to prove that

$$\varphi(n) = n \prod_{i=1}^k \left(1 - \frac{1}{p_i} \right).$$

PROBLEM 3. For each $k \in \{1, 2, 3, 4\}$, find all numbers *n* such that $\varphi(n) = k$.

PROBLEM 4. How does Euler's formula show that if gcd(m, n) = 1, then $\varphi(mn) = \varphi(m)\varphi(n)$? Find the smallest integers *a* and *b* such that $\varphi(ab) \neq \varphi(a)\varphi(b)$.

PROBLEM 5. Describe the positive integers *n* for which $\varphi(n)|n$.