PROBLEM 1. How many poker hands (5 cards) from a regular deck (52 cards) have at least one card from each of the four standard suits? *Hint*: Let N_{\clubsuit} be the collection of hands containing no spades, and similarly define N_{\clubsuit} , N_{\heartsuit} , and N_{\diamondsuit} . What is the relationship between the answer to this question and $|N_{\bigstar} \cup N_{\heartsuit} \cup N_{\heartsuit} \cup N_{\diamondsuit}|$?

PROBLEM 2. Recall that D_m denotes the number of derangements of [m]. How many derangements π of [n] have $\pi(1) = 2$ and $\pi(2) =$ 1? Fix some k such that $2 \le k \le n$; how many derangements π of [n]have $\pi(1) = k$ and $\pi(k) = 1$?

PROBLEM 3. How many derangements π of [n] have $\pi(1) = 2$ and $\pi(2) \neq 1$? Fix some k such that $2 \leq k \leq n$; how many derangements π of [n] have $\pi(1) = k$ and $\pi(k) \neq 1$?

PROBLEM 4. Let D_n be the number of derangements of [n]. Use your answers to Problems 2 and 3 to find a formula for D_n in terms of D_{n-1} and D_{n-2} . Determine D_1 and D_2 by hand and then use your formula to determine D_n for n = 3, 4, 5, and 6; check that your answers match with the closed formula given in the text.