There will be an in-class, closed book/notes/internet final exam 1-4 pm on Wednesday, May 8, in Eliot 314. The following is a precise description of what you are expected to know for the exam.

1. What is a relation on a set? An equivalence relation?
2. There will probably be an induction proof of some sort on the exam.
3. Know the meaning of the following terms used when talking about functions: domain, codomain, image (range), surjective, injective, bijective, composition, inverse.
4. What is a field?

5 . What is $\mathbb{Z} / n \mathbb{Z}$? Is it a field?
6. What are the order axioms?
7. What is the completeness axiom for the real numbers?
8. Be able to define the following terms associated with sets of real numbers: upper bound, lower bound, sup, inf, max, and min.
9. What are the complex numbers? Be able to add, multiply, and divide complex numbers, expressing your result in the form $a+b i$.
10. What is the polar form of a complex number? What is the argument and modulus? Be able to convert between two forms of a complex number. Know what happens to the argument and modulus when you multiply two complex numbers.
11. What is an open ball in \mathbb{R} or \mathbb{C} ? What is an open set in \mathbb{R} or \mathbb{C} ?
12. What is a closed set in \mathbb{R} or \mathbb{C} ?
13. For a real or complex sequence $\left\{a_{n}\right\}$, what does it mean to say $\lim _{n \rightarrow \infty} a_{n}=a$?
14. Be able to give an $\varepsilon-N$ proof for the limit of a simple sequence.
15. What is a monotone sequence?
16. Be able to prove that every convergent sequence is bounded.
17. State and prove the monotone convergence theorem.
18. Be able prove that if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences, then so is $\left\{a_{n}+b_{n}\right\}$, and $\lim \left(a_{n}+b_{n}\right)=\lim a_{n}+\lim b_{n}$. (This is an $\varepsilon / 2$ proof.)
19. What does it mean for a series to be absolutely convergent? Conditionally convergent?
20. Know the tests for convergence of series and how to use them. A summary of the tests and the solutions to the practice problems on sequences and series appears here: series tests.
21. Know how to sum a geometric series (being careful where the series starts).
22. For a real or complex function f, what does it mean to say $\lim _{z \rightarrow a} f(z)=L$?
23. Be able to give an $\varepsilon-\delta$ proof for the limit of a simple function.
24. What does it mean to say a function is continuous at a point?

25 . What is the definition of the derivative of a function at a point?
26. Know the two big theorems about powers series: the first having to do with the existence of a radius of convergence, and the second having to do with differentiation.
27. Be able to use the ratio test to find the radius of convergence of a power series.
28. Know the Taylor series for the exponential (denoted $\exp (z)$ or e^{z}), the sine, and cosine functions. From these, be able to show for all $z \in \mathbb{C}$ that

- $\exp ^{\prime}(z)=-\exp (z), \cos ^{\prime}(z)=-\sin (z)$, and $\sin ^{\prime}(z)=\cos (z) ;$
- $\exp (i z)=\cos (z)+i \sin (z)$.

29. Be able to compute the Taylor polynomial of a given order or the Taylor series for a function.
