Math 112 lecture for Friday, Week 13

THREE THEOREMS BY EULER

Theorem 1. The number e is irrational.

Proof. Euler discovered that e = > / ,, and used that to prove that e is irrational.
To start, we can at least see that e is an integer since
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Now, for the sake of contradiction, suppose that e is rational, and write e = § with

D,q € Z>;. Since e is not an integer, ¢ > 1. We have
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The expression on the left-hand side of (1),
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is an integer since e = § and L € Z when ¢ > n. We conclude that the right-hand
side of (1) is also an integer:
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Proof. We first recall some basic algebra. If P(z) is a polynomial of degree n with real
or complex coefficients, then it will have n (not necessarily distinct) roots, 1, ..., r,.!
We can then write

Pz)=k(z—ry) - (z—1y)

for some constant k. If no r; = 0, we can rewrite this expression as

P(z) = (=1)"kry -1y (1—%) (1—%).

and, thus,
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Consider sin(z) = z — al + R and divide by z to define
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so that P(z) = sin(z) for z # 0, and at z = 0, we have.
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By roots we mean P(ry) = 0 for each k.



Since sin(km) is zero for all integers k, it follows that P(kw) = 0 for all nonzero
integers k = £1, 42, ... Therefore, skipping several technical details, we emulate (2)
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Going back to the definition (3) of P, we have shown that
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Comparing the coefficient of 22 on both sides, we find
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and the result follows. O
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What about Z — 7 This number was shown to be irrational in 1978. It is an open
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question whether there is a rational r such that the sum is equal to ra3.

Theorem 3. There are infinitely many prime numbers.

Proof. Let s € C. Then
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Patiently multiplying out the final expression, and using the fact the each positive
integer can be uniquely factored into primes, you will find that
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If were only finitely many primes, the product on the right would be finite, and hence
we could evaluate it as a complex number when s = 1. However,
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which diverges. O
Note: The function ((s) = ié is known as the Riemann zeta function. Our
previous result states that i ,
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