Math 112 lecture for Friday, Week 13

Three theorems by Euler

Theorem 1. The number e is irrational.
Proof. Euler discovered that $e=\sum_{n=0}^{\infty} \frac{1}{n!}$, and used that to prove that e is irrational. To start, we can at least see that e is an integer since

$$
2=1+\frac{1}{1!}<e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots<1+\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots\right)=3 .
$$

Now, for the sake of contradiction, suppose that e is rational, and write $e=\frac{p}{q}$ with $p, q \in \mathbb{Z}_{\geq 1}$. Since e is not an integer, $q>1$. We have

$$
\begin{align*}
\frac{p}{q}=e=\sum_{n=0}^{\infty} \frac{1}{n!} & \Longrightarrow e-\sum_{n=0}^{q} \frac{1}{n!}=\sum_{n=q+1}^{\infty} \frac{1}{n!} \\
& \Longrightarrow q!\left(e-\sum_{n=0}^{q} \frac{1}{n!}\right)=\sum_{n=q+1}^{\infty} \frac{q!}{n!} \tag{1}
\end{align*}
$$

The expression on the left-hand side of (1),

$$
q!\left(e-\sum_{n=0}^{q} \frac{1}{n!}\right)
$$

is an integer since $e=\frac{p}{q}$ and $\frac{q!}{n!} \in \mathbb{Z}$ when $q \geq n$. We conclude that the right-hand side of (1) is also an integer:

$$
\sum_{n=q+1}^{\infty} \frac{1}{n!} \in \mathbb{Z}
$$

However,

$$
\begin{aligned}
\sum_{n=q+1}^{\infty} \frac{q!}{n!} & =\frac{q!}{(q+1)!}+\frac{q!}{(q+2)!}+\frac{q!}{(q+3)!}+\cdots \\
& =\frac{1}{q+1}+\frac{1}{(q+2)(q+1)}+\frac{1}{(q+3)(q+2)(q+1)}+\cdots \\
& <\frac{1}{q+1}+\frac{1}{(q+1)^{2}}+\frac{1}{(q+1)^{3}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{q+1} \sum_{n=0}^{\infty}\left(\frac{1}{q+1}\right)^{n} \\
& =\frac{1}{q+1} \cdot \frac{1}{1-\frac{1}{(q+1)}} \\
& =\frac{1}{q}<1 .
\end{aligned}
$$

Contradicting the fact that this sum is an integer.

Theorem 2. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
Proof. We first recall some basic algebra. If $P(z)$ is a polynomial of degree n with real or complex coefficients, then it will have n (not necessarily distinct) roots, $r_{1}, \ldots, r_{n} .{ }^{1}$ We can then write

$$
P(z)=k\left(z-r_{1}\right) \cdots\left(z-r_{n}\right)
$$

for some constant k. If no $r_{i}=0$, we can rewrite this expression as

$$
P(z)=(-1)^{n} k r_{1} \cdots r_{n}\left(1-\frac{z}{r_{1}}\right) \cdots\left(1-\frac{z}{r_{n}}\right) .
$$

Now further assume that $P(0)=1$. We then have

$$
1=P(0)=(-1)^{n} k r_{1} \cdots r_{n}
$$

and, thus,

$$
\begin{equation*}
P(z)=\left(1-\frac{z}{r_{1}}\right) \cdots\left(1-\frac{z}{r_{n}}\right) . \tag{2}
\end{equation*}
$$

Consider $\sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots$, and divide by z to define

$$
\begin{equation*}
P(z)=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots \tag{3}
\end{equation*}
$$

so that $P(z)=\frac{\sin (z)}{z}$ for $z \neq 0$, and at $z=0$, we have.

$$
P(0)=1=\lim _{z \rightarrow 0} \frac{\sin (z)}{z}
$$

[^0]Since $\sin (k \pi)$ is zero for all integers k, it follows that $P(k \pi)=0$ for all nonzero integers $k= \pm 1, \pm 2, \ldots$ Therefore, skipping several technical details, we emulate (2) and write

$$
\begin{aligned}
P(z) & =\left(1-\frac{z}{\pi}\right)\left(1+\frac{z}{\pi}\right)\left(1-\frac{z}{2 \pi}\right)\left(1+\frac{z}{2 \pi}\right)\left(1-\frac{z}{3 \pi}\right)\left(1+\frac{z}{3 \pi}\right) \cdots \\
& =\left(1-\frac{z^{2}}{\pi^{2}}\right)\left(1-\frac{z^{2}}{4 \pi^{2}}\right)\left(1-\frac{z^{2}}{9 \pi^{2}}\right) \cdots
\end{aligned}
$$

Going back to the definition (3) of P, we have shown that

$$
1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots=\left(1-\frac{z^{2}}{\pi^{2}}\right)\left(1-\frac{z^{2}}{4 \pi^{2}}\right)\left(1-\frac{z^{2}}{9 \pi^{2}}\right) \cdots
$$

Comparing the coefficient of z^{2} on both sides, we find

$$
-\frac{1}{6}=-\sum_{n=1}^{\infty} \frac{1}{n^{2} \pi}
$$

and the result follows.
Exercise. Show that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.
What about $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$? This number was shown to be irrational in 1978. It is an open question whether there is a rational r such that the sum is equal to $r \pi^{3}$.

Theorem 3. There are infinitely many prime numbers.
Proof. Let $s \in \mathbb{C}$. Then

$$
\begin{aligned}
\prod_{p \text { prime }}^{\infty}\left(\frac{1}{1-p^{-s}}\right) & =\prod_{p \text { prime }}^{\infty}\left(1+p^{-s}+p^{-2 s}+p^{-3 s}+\cdots\right) \\
& =\left(1+\frac{1}{2^{s}}+\frac{1}{2^{2 s}}+\cdots\right)\left(1+\frac{1}{3^{s}}+\frac{1}{3^{2 s}}+\cdots\right) \cdots
\end{aligned}
$$

Patiently multiplying out the final expression, and using the fact the each positive integer can be uniquely factored into primes, you will find that

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }}^{\infty}\left(\frac{1}{1-p^{-s}}\right)
$$

If were only finitely many primes, the product on the right would be finite, and hence we could evaluate it as a complex number when $s=1$. However,

$$
\zeta(1)=\sum_{n=1}^{\infty} \frac{1}{n},
$$

which diverges.
Note: The function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{z^{s}}$ is known as the Riemann zeta function. Our previous result states that

$$
\zeta(2)=\frac{\pi^{2}}{6}
$$

[^0]: ${ }^{1}$ By roots we mean $P\left(r_{k}\right)=0$ for each k.

