
Math 112 lecture for Friday, Week 13

Three theorems by Euler

Theorem 1. The number e is irrational.

Proof. Euler discovered that e =
∑∞

n=0
1
n!
, and used that to prove that e is irrational.

To start, we can at least see that e is an integer since

2 = 1 +
1

1!
< e = 1 +

1

1!
+

1

2!
+

1

3!
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1

4!
+ · · · < 1 +

(
1 +

1

2
+

1

22
+

1

23
+ · · ·

)
= 3.

Now, for the sake of contradiction, suppose that e is rational, and write e = p
q
with

p, q ∈ Z≥1. Since e is not an integer, q > 1. We have

p

q
= e =

∞∑
n=0

1

n!
=⇒ e−

q∑
n=0

1

n!
=

∞∑
n=q+1

1

n!

=⇒ q!

(
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n=0

1

n!

)
=
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n=q+1

q!

n!
(1)

The expression on the left-hand side of (1),

q!

(
e−

q∑
n=0

1

n!

)
,

is an integer since e = p
q
and q!

n!
∈ Z when q ≥ n. We conclude that the right-hand

side of (1) is also an integer:
∞∑

n=q+1

1

n!
∈ Z.

However,

∞∑
n=q+1

q!

n!
=

q!
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+

q!
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<
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=
1

q + 1

∞∑
n=0

(
1

q + 1

)n

=
1

q + 1
· 1

1− 1
(q+1)

(geometric series formula)

=
1

q
< 1.

Contradicting the fact that this sum is an integer.

Theorem 2.
∞∑
n=1

1

n2
=

π2

6
.

Proof. We first recall some basic algebra. If P (z) is a polynomial of degree n with real
or complex coefficients, then it will have n (not necessarily distinct) roots, r1, . . . , rn.

1

We can then write
P (z) = k(z − r1) · · · (z − rn)

for some constant k. If no ri = 0, we can rewrite this expression as

P (z) = (−1)nkr1 · · · rn
(
1− z

r1

)
· · ·
(
1− z

rn

)
.

Now further assume that P (0) = 1. We then have

1 = P (0) = (−1)nkr1 · · · rn,

and, thus,

P (z) =

(
1− z

r1

)
· · ·
(
1− z

rn

)
. (2)

Consider sin(z) = z − z3

3!
+

z5

5!
− · · · , and divide by z to define

P (z) = 1− z2

3!
+

z4

5!
− · · · (3)

so that P (z) =
sin(z)

z
for z ̸= 0, and at z = 0, we have.

P (0) = 1 = lim
z→0

sin(z)

z
.

1By roots we mean P (rk) = 0 for each k.
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Since sin(kπ) is zero for all integers k, it follows that P (kπ) = 0 for all nonzero
integers k = ±1,±2, . . . Therefore, skipping several technical details, we emulate (2)
and write

P (z) =
(
1− z

π

)(
1 +

z

π

)(
1− z

2π

)(
1 +

z

2π

)(
1− z

3π

)(
1 +

z

3π

)
· · ·

=

(
1− z2

π2

)(
1− z2

4π2

)(
1− z2

9π2

)
· · ·

Going back to the definition (3) of P , we have shown that

1− z2

3!
+

z4

5!
− · · · =

(
1− z2

π2

)(
1− z2

4π2

)(
1− z2

9π2

)
· · ·

Comparing the coefficient of z2 on both sides, we find

−1

6
= −

∞∑
n=1

1

n2π
,

and the result follows.

Exercise. Show that
∞∑
n=1

1

n4
=

π4

90
.

What about
∞∑
n=1

1

n3
? This number was shown to be irrational in 1978. It is an open

question whether there is a rational r such that the sum is equal to rπ3.

Theorem 3. There are infinitely many prime numbers.

Proof. Let s ∈ C. Then
∞∏

p prime

(
1

1− p−s

)
=

∞∏
p prime

(
1 + p−s + p−2s + p−3s + · · ·

)

=

(
1 +

1

2s
+

1

22s
+ · · ·

)(
1 +

1

3s
+

1

32s
+ · · ·

)
· · ·
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Patiently multiplying out the final expression, and using the fact the each positive
integer can be uniquely factored into primes, you will find that

ζ(s) :=
∞∑
n=1

1

ns
=

∞∏
p prime

(
1

1− p−s

)
If were only finitely many primes, the product on the right would be finite, and hence
we could evaluate it as a complex number when s = 1. However,

ζ(1) =
∞∑
n=1

1

n
,

which diverges.

Note: The function ζ(s) =
∞∑
n=1

1

zs
is known as the Riemann zeta function. Our

previous result states that

ζ(2) =
π2

6
.
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