
Math 112 lecture for Monday, Week 12

Power series I

(Supplemental reading: Section 9.3 in Swanson.)

Definition. Let {an} be a sequence of complex numbers. The series

f(z) =
∞∑
n=0

anz
n

is a (complex) power series with n-th coefficient an.

Remarks.

(a) A power series may be thought of as a family of ordinary series of the type we’ve
just studied. We get one series for each point z ∈ C. For instance, consider the
series

∑∞
n=0

zn

n!
. Letting z = 1 gives the series

∑∞
n=0

1
n!
, and letting z = 2 + 3i

gives
∑∞

n=0
(2+3i)n

n!
.

(b) The n-th term of the series is anz
n, and the n-th coefficient is an.

(c) Suppose that f(z) =
∑∞

n=0 anz
n converges for all D ⊆ C. Then f defines a

function f : D → C.

Theorem (Main theorem for power series.) Let f(z) =
∑∞

n=0 anz
n be a complex

power series. Then one of the following holds:

(a) f(z) converges only when z = 0.

(b) f(z) converges for all z ∈ C.

(c) There exists a real number R > 0 such that f(z) converges absolutely when
|z| < R and diverges for |z| > R.

Definition. The number R defined above is called the radius of convergence for the
series. We say R = 0 in case (a) and R = ∞ in case (b) of the theorem.

We will prove this theorem next time. To find the radius of convergence, one usually
uses the ratio test.
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Example. Find the radius of convergence for f(z) =
∑∞

n=0
zn

n!
.

Solution. The ratio tests applies after taking absolute values of the terms:∣∣∣ zn+1

(n+ 1)!

∣∣∣/∣∣∣zn
n!

∣∣∣ = n!

(n+ 1)!
· |z|

n+1

|z|n
=

|z|
n+ 1

→ 0,

as n → ∞. So the ratio test says that the series converges absolutely for all z ∈ C.
Therefore, the radius of convergence is ∞.

Example. Find the radius of convergence of f(z) =
∑∞

n=0
1
5n
zn.

Solution. One could use the geometric series test here, but we’ll use the ratio test
again: ∣∣∣ 1

5n+1
zn+1

∣∣∣/∣∣∣ 1
5n

zn
∣∣∣ = 5n

5n+1

|z|n+1

|z|n
=

|z|
5

→ |z|
5
,

as n → ∞. The ratio test says the series converges if

|z|
5

< 1

and diverges if |z|
5
> 1. We have

|z|
5

< 1 ⇒ |z| < 5.

So the series converges absolutely for |z| < 5 and diverges for |z| > 5, i.e., the radius
of convergence is 5. (On the boundary, where |z| = 5, we know the series diverges by
the geometric series test:

∑∞
n=0

(
z
5

)n
diverges if |z/5| ≥ 1.)

Example. Find the radius of convergence of the power series

∞∑
n=0

(3n)!

n!(2n)!
zn.

Solution. Apply the ratio test:(
(3(n+ 1))!

(n+ 1)!(2(n+ 1))!

)
|z|n+1

/(
(3n)!

n!(2n)!

)
|z|n =

(3(n+ 1))!

(3n)!

n!

(n+ 1)!

(2n)!

(2(n+ 1))!
|z|

=
(3n+ 3)(3n+ 2)(3n+ 1)

(n+ 1)(2n+ 2)(2n+ 1)
|z|

−→ 27

4
|z|,
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as n → ∞. By the ratio test, we get convergence if

27

4
|z| < 1,

or in other words,

|z| < 27

4
.

So the radius of convergence is 27
4
.

A version of the ratio test for power series. Let f(z) =
∑∞

n=0 anz
n. Apply the

ratio test for series (remembering to take absolute values since the ratio test requires
positive terms):

|an+1||z|n+1

|an||z|n
=

|an+1|
|an|

|z| → r|z|,

where

r = lim
n→∞

|an+1|
|an|

≥ 0

which we are supposing exists. The ratio test then says we get convergence if

r|z| < 1.

If r = 0, the power series convergences for all z, and the radius of convergence is ∞.
Otherwise, the power series converges for z satisfying

|z| < 1

r
,

and the radius of convergence is 1/r. However, note that

1

r
=

1

limn→∞
|an+1|
|an|

= lim
n→∞

|an|
|an+1|

.

If r = 0, we’ll have limn→∞
|an|

|an+1| = ∞. So we get the following result:

Proposition (Ratio test for power series). Let f(z) =
∑∞

n=0 anz
n be a complex

power series with (eventually) nonzero coefficients, and suppose that

lim
n→∞

|an|
|an+1|

= R ∈ R ∪ {∞} .

Then R is the radius of convergence of f .
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warning: Note that the ratio test for an ordinary series of positive terms
∑∞

n=0 an
requires checking whether

lim
n→∞

an+1

an
< 1.

Compare this with the limit in the proposition. There are two differences: (i) We take
absolute values since we are not assuming the terms in the power series are positive,
and (ii) The order in which an and an+1 appear in the numerator and denominator
switch.

Example. Repeating the previous example using the power series ratio test rather
than the ordinary ratio test we would do the following calculation:(

(3n)!

n!(2n)!

)/(
(3(n+ 1))!

(n+ 1)!(2(n+ 1))!

)
=

(3n)!

(3(n+ 1))!

(n+ 1)!

n!

(2(n+ 1))!

(2n)!

=
(n+ 1)(2n+ 2)(2n+ 1)

(3n+ 3)(3n+ 2)(3n+ 1)

−→ 4

27
,

as n → ∞. Using the power series ratio test is quicker than using the usual ratio test
since we leave out factors of |z| and we don’t have to solve for |z| at the end.

Example. Here is an example from the Math 112 notes by Ray Mayer (Math 112
Notes). Consider the power series

f(z) =
∞∑
n=0

zn
2

n2
.

What is its radius of convergence? The ratio test and power series ratio test do not
directly apply to f(z) since its k-th coefficient is 0 unless k = n2 for some integer n

(and, hence, we cannot divide by it). In this case, define an := zn
2

n2 , and then

∞∑
n=0

an =
∞∑
n=0

zn
2

n2
.

We can then apply the ordinary ratio test to
∑∞

n=0 an, which is a series of nonzero
terms:

|an+1|
|an|

=

∣∣∣∣∣ z(n+1)2

(n+ 1)2

∣∣∣∣∣/
∣∣∣∣∣zn

2

n2

∣∣∣∣∣ = n2

(n+ 1)2
|z|n2+2n+1

|z|n2 =
n2

(n+ 1)2
|z|2n+1.
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We have

lim
n→∞

n2

(n+ 1)2
|z|2n+1 =

{
0 if |z| < 1

∞ if |z| > 1.

It follows that the radius of convergence for the original series is R = 1. When |z| = 1,
the series converges absolutely since

∑∞
n=0

1
n2 converges by the p-series test.

Let D = {z ∈ C : |z| ≤ 1} be the closed unit disk, and consider the function

f : D → C

z 7→
∞∑
n=0

zn
2

n2
.

To picture f draw the following picture in the plane, centered at the origin, and look
at its image after applying f :

f
?

The image is pictured below:

Image of concentric circles and radial lines under f(z) =
∞∑
n=0

zn
2

n2
.
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The fractal-like boundary is the image of the boundary of the disc. We see that
when z is small, the function looks almost like the identity function—sending circles
in the domain to near-circles in the codomain. As z approaches the boundary of the
disc, f gets more and more “confused”.
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