Math 112 lecture for Friday, Week 12

(Supplemental reading: Sections 6.5 and 9.7 in Swanson.)

TAYLOR SERIES I

The purpose of Taylor series is to approximate functions by polynomials.
Suppose that $f: D \rightarrow \mathbb{C}$ for some open set $D \subseteq \mathbb{C}$, and let $a \in D$. Suppose that the k-th derivative $f^{(k)}(a)$ exists for all $k \geq 0$.
Recall that by definition,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Therefore, if h is small, we have

$$
f^{\prime}(a) \approx \frac{f(a+h)-f(a)}{h}
$$

Solving for $f(a+h)$ gives

$$
f(a+h) \approx f(a)+f^{\prime}(a) h
$$

for h close to 0 . Finally, define $z=a+h$ and substitute to get

$$
f(z) \approx f(a)+f^{\prime}(a)(z-a)
$$

for z close to a. Geometrically, we have approximated f near z using a linear function (which is the equation for its tangent line). We call this a first-order approximation of f. The idea behind a Taylor polynomial or Taylor series is to get higher-order and more accurate approximations of f.
Here is a heuristic that is useful in understanding where Taylor series come from. Suppose you know that $f(z)$ is given by a power series

$$
f(z)=a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+a_{3}(z-a)^{3}+a_{4}(z-a)^{4}+a_{5}(z-a)^{5}+\cdots
$$

Then it follows that

$$
\begin{aligned}
f^{\prime}(z) & =a_{1}+2 a_{2}(z-a)+3 a_{3}(z-a)^{2}+4 a_{4}(z-a)^{3}+5 a_{5}(z-a)^{4}+\cdots \\
f^{\prime \prime}(z) & =2 \cdot 1 a_{2}+3 \cdot 2 a_{3}(z-a)+4 \cdot 3 a_{4}(z-a)^{2}+5 \cdot 4 a_{5}(z-a)^{3}+\cdots \\
f^{(3)}(z) & =3 \cdot 2 \cdot 1 a_{3}+4 \cdot 3 \cdot 2 a_{4}(z-a)+5 \cdot 4 \cdot 3 a_{5}(z-a)^{2}+\cdots \\
f^{(4)}(z) & =4 \cdot 3 \cdot 2 \cdot 1 a_{4}+5 \cdot 4 \cdot 3 \cdot 2 a_{5}(z-a)+\cdots
\end{aligned}
$$

Next, evaluate these derivatives at $z=a$, at which point, all terms of the form $(z-a)^{k}$ vanish, and solve for the a_{i} :

$$
\begin{aligned}
f^{\prime}(a)=a_{1} & \Rightarrow a_{1}=f^{\prime}(a) \\
f^{\prime \prime}(a)=2 \cdot 1 a_{2} & \Rightarrow a_{2}=\frac{f^{\prime \prime}(a)}{2!} \\
f^{(3)}(a)=3 \cdot 2 \cdot 1 a_{3} & \Rightarrow a_{3}=\frac{f^{(3)}(a)}{3!} \\
f^{(3)}(a)=3 \cdot 2 \cdot 1 a_{3} & \Rightarrow a_{3}=\frac{f^{(3)}(a)}{3!} \\
f^{(4)}(a)=4 \cdot 3 \cdot 2 \cdot 1 a_{4} & \Rightarrow \quad a_{3}=\frac{f^{(4)}(a)}{4!}
\end{aligned}
$$

Thus, if f is a power series, we can determine the coefficients:

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

Note: By definition, $f^{(0)}(a)=f(a)$, and $f^{(n)}$ is the n-th derivative for $n \geq 1$.
Definition. The k-th order Taylor polynomial for f centered at a is

$$
\sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

and the Taylor series for f centered at a is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

Example. The first-order Taylor polynomial of f is

$$
f(a)+f^{\prime}(a)(z-a)
$$

which is the approximation we derived earlier using the definition of the derivative of f.

Example. Consider the polynomial

$$
f(z)=3-2 z+3 z^{2}+z^{3}
$$

To find the Taylor series centered at $a=1$, we compute the relevant derivatives:

$$
f^{\prime}(z)=-2+6 z+3 z^{2}, \quad f^{\prime \prime}(z)=6+6 z, \quad f^{(3)}(z)=6
$$

and all higher-order derivatives are 0 . The second-order Taylor polynomial of f centered at $a=1$ is

$$
\begin{aligned}
T_{2}(z) & :=f(1)+f^{\prime}(1)(z-1)+\frac{f^{\prime \prime}(1)}{2!}(z-1)^{2} \\
& =5+7(z-1)+6(z-1)^{2} .
\end{aligned}
$$

Here is a plot of f and T_{2} near $z=1\left(T_{2}\right.$ is in red, and note that the two axes have different scales):

Close to $z=1$, the second-order Taylor polynomial is a great approximation for f. The third-order Taylor polynomial is

$$
\begin{aligned}
T_{3}(z) & :=f(1)+f^{\prime}(1)(z-1)+\frac{f^{\prime \prime}(1)}{2!}(z-1)^{2}+\frac{f^{(3)}(1)}{3!}(z-1)^{3} \\
& =5+7(z-1)+6(z-1)^{2}+(z-1)^{3} .
\end{aligned}
$$

Since all derivatives of f of order 4 or higher are 0 , the fourth- and higher-order Taylor polynomials are all equal to this third-order Taylor polynomial (as is the Taylor series).

In fact, this third-order Taylor polynomial is as good an approximation to f as you could ever want: you can check for yourself that if you multiply out T_{3}, you actually get f, i.e., $f(z)=T_{3}(z)$ for all z. This is what you'd expect from the best third-order approximation of a polynomial of degree 3 .

Proposition. Let f be a polynomial of degree d, and let T_{k} denote the Taylor polynomial for f of order k centered at any point. Then $T_{k}(z)=f(z)$ for all z for all $k \geq d$.

Example. Let $f(z)=\cos (z)$. The derivatives of f are

$$
f^{\prime}(z)=-\sin (z), \quad f^{\prime \prime}(z)=-\cos (z), \quad f^{(3)}(z)=\sin (z), \quad f^{(4)}(z)=\cos (z), \ldots
$$

From this point on, the higher-order derivative cycle among those we've just calculated. Let's compute the Taylor series at $z=0$. We have

$$
f(0)=1, f^{\prime}(0)=0, f^{\prime \prime}(0)=-1, f^{(3)}(0)=0, f^{(4)}(0)=f(0)=1
$$

and these values keep cycling. This means that the Taylor series for $\cos (z)$ is

$$
\begin{aligned}
T & :=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n} \\
& =1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots
\end{aligned}
$$

Here is a plot of $f(z)=\cos (z)$ (in black), $T_{2}(z)$ (in red), $T_{4}(z)$ (in blue), $T_{6}(z)$ (salmon and dashed), and $T_{8}(z)$ (green and dashed):

You should notice that the approximations near $z=0$ get successively better.

The following theorems help to express that fact that Taylor polynomials and Taylor series are good approximations for functions.

Theorem (Taylor's theorem over \mathbb{C}). Let $A \subseteq \mathbb{C}$ and let $f: A \rightarrow \mathbb{C}$. Suppose that $B(a ; r) \subseteq A$ and that f has derivatives of orders $1, \ldots, n$ on $B(a ; r)$ where $n \geq 1$. Let $T_{n, a}$ be the Taylor polynomial of order n for f centered at a. Then for all $\varepsilon>0$ there exists $\delta>0$ such that if $z \in B(a ; \delta)$, then

$$
\left|f(z)-T_{n, a}(z)\right|<\varepsilon
$$

Theorem. (Taylor's theorem over \mathbb{R}) Let $A \subseteq \mathbb{R}$ and let $f: A \rightarrow \mathbb{R}$. Suppose that A contains an open interval containing the closed interval $[u, v]$. Also suppose that all the derivatives up to order n exist and are continuous on $[u, v]$ and the $(n+1)$ th derivative exists on (u, v). Let $a \in A$, and let $T_{n, a}$ be the Taylor polynomial of order n for f centered at a. Then for all $x \in[u, v]$, there exists a number c strictly between x and a such that

$$
f(x)=T_{n, a}(x)+\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

How to interpret this last theorem. The term

$$
\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}=f(x)-T_{n, a}(x)
$$

is the error in approximating f by its n-th order Taylor polynomial In particular, if $\left|f^{n+1}\right|$ is bounded by M on the interval $[u, v]$, then the error is bounded:

$$
\left|\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

Note that if x is close to a then the factor $\frac{1}{(n+1)!} \cdot(x-a)^{n+1}$ will be very small. (For instance, for any constant α, we have $\lim _{n \rightarrow \infty} \frac{\alpha^{n+1}}{(n+1)!}=0$.)

