Math 112 lecture for Friday, Week 12

(Supplemental reading: Sections 6.5 and 9.7 in Swanson.)

TAYLOR SERIES 1
The purpose of Taylor series is to approximate functions by polynomials.

Suppose that f: D — C for some open set D C C, and let a € D. Suppose that
the k-th derivative f(*)(a) exists for all & > 0.
Recall that by definition,

f'(a) = lim

h—0

fla+h)—f(a)
- :

Therefore, if A is small, we have

oy~ JoE D =@
Solving for f(a + h) gives
fla+h) = f(a) + f'(a)h.

for h close to 0. Finally, define z = a + h and substitute to get

f(z) = f(a) + f'(a)(z — a)

for z close to a. Geometrically, we have approximated f near z using a linear function
(which is the equation for its tangent line). We call this a first-order approximation
of f. The idea behind a Taylor polynomial or Taylor series is to get higher-order and
more accurate approximations of f.

Here is a heuristic that is useful in understanding where Taylor series come from.
Suppose you know that f(z) is given by a power series

f(2) =ao+ai(z —a)+as(z —a)* +as(z —a)® + as(z —a)* + as(z —a)® +---

Then it follows that
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Next, evaluate these derivatives at z = a, at which point, all terms of the form (z—a)

vanish, and solve for the a;:

flla)=ar = a1 = f(a)

[(a)=2-1ay = aF%(f)
@) =3-2-1a5 = az= f(?’;!(a)
fOa)=3-2-1a5 = a3— f(?’;!(a)

fO@)=4-3-2-1a, = ang“i!(a)

Thus, if f is a power series, we can determine the coefficients:

o n)(g
TG SEACIFET

n.

Note: By definition, f(a) = f(a), and f™ is the n-th derivative for n > 1.

Definition. The k-th order Taylor polynomial for f centered at a is

and the Taylor series for f centered at a is

0 rn) (g
Zf '( )(z—a)”.

n.

Example. The first-order Taylor polynomial of f is

fa) + f'(a)(z — a),
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which is the approximation we derived earlier using the definition of the derivative

of f.
Example. Consider the polynomial
f(2) =3 —22+32"+ 27
To find the Taylor series centered at a = 1, we compute the relevant derivatives:
fl(2)==2+462432% f'(2)=6+62, fO) =6,

and all higher-order derivatives are 0. The second-order Taylor polynomial of f
centered at a =1 is

f// 1 9
2(! )(z -1)

Tr(z) = f()+ f(D)(z—1) +

=5+7(z—1)+6(z —1)*

Here is a plot of f and Ty near z = 1 (75 is in red, and note that the two axes have
different scales):

Close to z = 1, the second-order Taylor polynomial is a great approximation for f.

The third-order Taylor polynomial is

1e) o= 1)+ (e - )+ LG -1 -y

=54+7(z—-1)+6(z—1)*+ (2 — 1)

Since all derivatives of f of order 4 or higher are 0, the fourth- and higher-order Taylor
polynomials are all equal to this third-order Taylor polynomial (as is the Taylor series).
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In fact, this third-order Taylor polynomial is as good an approximation to f as you
could ever want: you can check for yourself that if you multiply out 73, you actually
get f, i.e., f(z) = T3(z) for all z. This is what you'd expect from the best third-order
approximation of a polynomial of degree 3.

Proposition. Let f be a polynomial of degree d, and let T} denote the Taylor
polynomial for f of order k centered at any point. Then Ty(z) = f(z) for all z for
all k> d.

Example. Let f(z) = cos(z). The derivatives of f are
f'(z) = —sin(z), f"(z) = —cos(z), [fP(z)=sin(z), [fD(2)=cos(z),...

From this point on, the higher-order derivative cycle among those we’ve just calcu-
lated. Let’s compute the Taylor series at z = 0. We have

F0) =1, f(0) =0, f(0) = =1, f(0) =0, fU(0) = f(0) =1,

and these values keep cycling. This means that the Taylor series for cos(z) is

S0 ,
T._Z o z
n=0

22 24 S

Here is a plot of f(z) = cos(z) (in black), T»(2) (in red), T4(2) (in blue), Ti(z) (salmon
and dashed), and Tg(z) (green and dashed):

2] T,




You should notice that the approximations near z = 0 get successively better.

The following theorems help to express that fact that Taylor polynomials and Taylor
series are good approximations for functions.

Theorem (Taylor’s theorem over C). Let A C C and let f: A — C. Suppose
that B(a;r) C A and that f has derivatives of orders 1,...,n on B(a;r) where n > 1.
Let T), , be the Taylor polynomial of order n for f centered at a. Then for all € > 0
there exists § > 0 such that if z € B(a;0), then

|f(2) = Tha(2)] <e.

Theorem. (Taylor’s theorem over R) Let A C R and let f: A — R. Suppose
that A contains an open interval containing the closed interval [u,v]. Also suppose
that all the derivatives up to order n exist and are continuous on [u, v] and the (n+1)-
th derivative exists on (u,v). Let a € A, and let T,,, be the Taylor polynomial of
order n for f centered at a. Then for all € [u,v], there exists a number ¢ strictly
between z and a such that

1
(n+ 1)!

f(@) = Tha(z) + Fr (o) @ —a)"

How to interpret this last theorem. The term

O = ) = @) = Tle)

is the error in approximating f by its n-th order Taylor polynomial In particular, if
| "1 is bounded by M on the interval [u, v], then the error is bounded:

1
(n+1) —_ )\ < . n+1'
Note that if x is close to a then the factor ﬁ - (z — a)™™! will be very small. (For
instance, for any constant o, we have lim,,_,, (C:LnTT)' =0.)



