
Math 112 lecture for Friday, Week 12

(Supplemental reading: Sections 6.5 and 9.7 in Swanson.)

Taylor series I

The purpose of Taylor series is to approximate functions by polynomials.

Suppose that f : D → C for some open set D ⊆ C, and let a ∈ D. Suppose that
the k-th derivative f (k)(a) exists for all k ≥ 0.

Recall that by definition,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Therefore, if h is small, we have

f ′(a) ≈ f(a+ h)− f(a)

h
.

Solving for f(a+ h) gives

f(a+ h) ≈ f(a) + f ′(a)h.

for h close to 0. Finally, define z = a+ h and substitute to get

f(z) ≈ f(a) + f ′(a)(z − a)

for z close to a. Geometrically, we have approximated f near z using a linear function
(which is the equation for its tangent line). We call this a first-order approximation
of f . The idea behind a Taylor polynomial or Taylor series is to get higher-order and
more accurate approximations of f .

Here is a heuristic that is useful in understanding where Taylor series come from.
Suppose you know that f(z) is given by a power series

f(z) = a0 + a1(z − a) + a2(z − a)2 + a3(z − a)3 + a4(z − a)4 + a5(z − a)5 + · · ·

Then it follows that

f ′(z) = a1 + 2a2(z − a) + 3a3(z − a)2 + 4a4(z − a)3 + 5a5(z − a)4 + · · ·
f ′′(z) = 2 · 1 a2 + 3 · 2 a3(z − a) + 4 · 3 a4(z − a)2 + 5 · 4 a5(z − a)3 + · · ·

f (3)(z) = 3 · 2 · 1 a3 + 4 · 3 · 2 a4(z − a) + 5 · 4 · 3 a5(z − a)2 + · · ·
f (4)(z) = 4 · 3 · 2 · 1 a4 + 5 · 4 · 3 · 2 a5(z − a) + · · ·
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...

Next, evaluate these derivatives at z = a, at which point, all terms of the form (z−a)k

vanish, and solve for the ai:

f ′(a) = a1 ⇒ a1 = f ′(a)

f ′′(a) = 2 · 1 a2 ⇒ a2 =
f ′′(a)

2!

f (3)(a) = 3 · 2 · 1 a3 ⇒ a3 =
f (3)(a)

3!

f (3)(a) = 3 · 2 · 1 a3 ⇒ a3 =
f (3)(a)

3!

f (4)(a) = 4 · 3 · 2 · 1 a4 ⇒ a3 =
f (4)(a)

4!
...

Thus, if f is a power series, we can determine the coefficients:

f(z) =
∞∑
n=0

f (n)(a)

n!
(z − a)n.

Note: By definition, f (0)(a) = f(a), and f (n) is the n-th derivative for n ≥ 1.

Definition. The k-th order Taylor polynomial for f centered at a is

k∑
n=0

f (n)(a)

n!
(z − a)n,

and the Taylor series for f centered at a is

∞∑
n=0

f (n)(a)

n!
(z − a)n.

Example. The first-order Taylor polynomial of f is

f(a) + f ′(a)(z − a),
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which is the approximation we derived earlier using the definition of the derivative
of f .

Example. Consider the polynomial

f(z) = 3− 2z + 3z2 + z3

To find the Taylor series centered at a = 1, we compute the relevant derivatives:

f ′(z) = −2 + 6z + 3z2, f ′′(z) = 6 + 6z, f (3)(z) = 6,

and all higher-order derivatives are 0. The second-order Taylor polynomial of f
centered at a = 1 is

T2(z) := f(1) + f ′(1)(z − 1) +
f ′′(1)

2!
(z − 1)2

= 5 + 7(z − 1) + 6(z − 1)2.

Here is a plot of f and T2 near z = 1 (T2 is in red, and note that the two axes have
different scales):

Close to z = 1, the second-order Taylor polynomial is a great approximation for f .

The third-order Taylor polynomial is

T3(z) := f(1) + f ′(1)(z − 1) +
f ′′(1)

2!
(z − 1)2 +

f (3)(1)

3!
(z − 1)3

= 5 + 7(z − 1) + 6(z − 1)2 + (z − 1)3.

Since all derivatives of f of order 4 or higher are 0, the fourth- and higher-order Taylor
polynomials are all equal to this third-order Taylor polynomial (as is the Taylor series).
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In fact, this third-order Taylor polynomial is as good an approximation to f as you
could ever want: you can check for yourself that if you multiply out T3, you actually
get f , i.e., f(z) = T3(z) for all z. This is what you’d expect from the best third-order
approximation of a polynomial of degree 3.

Proposition. Let f be a polynomial of degree d, and let Tk denote the Taylor
polynomial for f of order k centered at any point. Then Tk(z) = f(z) for all z for
all k ≥ d.

Example. Let f(z) = cos(z). The derivatives of f are

f ′(z) = − sin(z), f ′′(z) = − cos(z), f (3)(z) = sin(z), f (4)(z) = cos(z), . . .

From this point on, the higher-order derivative cycle among those we’ve just calcu-
lated. Let’s compute the Taylor series at z = 0. We have

f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f (3)(0) = 0, f (4)(0) = f(0) = 1,

and these values keep cycling. This means that the Taylor series for cos(z) is

T :=
∞∑
n=0

f (n)(0)

n!
zn

= 1− z2

2!
+

z4

4!
− z6

6!
+ . . .

Here is a plot of f(z) = cos(z) (in black), T2(z) (in red), T4(z) (in blue), T6(z) (salmon
and dashed), and T8(z) (green and dashed):

T2

T4

T6

T8
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You should notice that the approximations near z = 0 get successively better.

The following theorems help to express that fact that Taylor polynomials and Taylor
series are good approximations for functions.

Theorem (Taylor’s theorem over C). Let A ⊆ C and let f : A → C. Suppose
that B(a; r) ⊆ A and that f has derivatives of orders 1, . . . , n on B(a; r) where n ≥ 1.
Let Tn,a be the Taylor polynomial of order n for f centered at a. Then for all ε > 0
there exists δ > 0 such that if z ∈ B(a; δ), then

|f(z)− Tn,a(z)| < ε.

Theorem. (Taylor’s theorem over R) Let A ⊆ R and let f : A → R. Suppose
that A contains an open interval containing the closed interval [u, v]. Also suppose
that all the derivatives up to order n exist and are continuous on [u, v] and the (n+1)-
th derivative exists on (u, v). Let a ∈ A, and let Tn,a be the Taylor polynomial of
order n for f centered at a. Then for all x ∈ [u, v], there exists a number c strictly
between x and a such that

f(x) = Tn,a(x) +
1

(n+ 1)!
f (n+1)(c)(x− a)n+1.

How to interpret this last theorem. The term

1

(n+ 1)!
f (n+1)(c)(x− a)n+1 = f(x)− Tn,a(x)

is the error in approximating f by its n-th order Taylor polynomial In particular, if
|fn+1| is bounded by M on the interval [u, v], then the error is bounded:∣∣∣∣ 1

(n+ 1)!
f (n+1)(c)(x− a)n+1

∣∣∣∣ ≤ M

(n+ 1)!
|x− a|n+1.

Note that if x is close to a then the factor 1
(n+1)!

· (x− a)n+1 will be very small. (For

instance, for any constant α, we have limn→∞
αn+1

(n+1)!
= 0.)
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