
Math 112 lecture for Wednesday, Week 11

Limits of functions

(Supplemental reading: Sections 4.1 and 4.2 in Swanson.)

We now switch our focus from limits of sequences and series to limits of functions.
Let F = R or C.

Recall that the definition of the derivative of a function f at a point a looks something
like this:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Here we are taking the limit of the function

g(h) := lim
h→0

f(a+ h)− f(a)

h
,

and that function is not defined at exactly the point of interest, i.e., at h = 0:

g(0) =
f(a+ 0)− f(a)

0
=

0

0
= undefined.

In this way, a main use of the limit of a function is to determine what value a
function should have at a point at which it is not defined. We are able to make this
determination since the function is nicely behaved at all nearby points. The following
definition characterizes the types of points, called limit points, at which we might
hope to compute a limit.

Definition. Let A ⊆ F . A point x ∈ F is a limit point of A if every open ball
centered at x contains a point of A not equal to x. In other words, for all r > 0 there
exists y ∈ B(x, r) ∩ A such that x ̸= y.

Roughly, a limit point x of a set A can be approximated arbitrary closely by points
besides x that are contained in A. The limit point, itself may or may not be in A.

Examples.

(a) The limit points of A = (0, 1) ⊂ R are all points in the closed interval [0, 1].
Note that 0 and 1 are limit points of A that are not in A.

(b) The limit points of A = (0, 1) ∪ {7} ⊂ R are again the points of [0, 1]. That’s
because there is an open interval (ball) about 7 that contains no points of A
besides 7 (for instance, the interval (6, 8) contains no points in A besides 7). We
naturally call 7 an isolated point of A.
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(c) The set of limit points of the “punctured ball” B(0; 1) \ 0 of radius 1 centered
at the origin in C is the closed ball

B(0; 1) := {z ∈ C : |z| ≤ 1} .

Every point in the punctured open ball is a limit point, but so are the points on
the boundary and the origin.

Definition. Let F = R or C, as usual. Let A ⊆ F and f : A → F . Let a ∈ F be a
limit point of A. Then the limit of f(x) as x approaches a is L ∈ F if for all ε > 0,
there exists δ > 0 such that if x ∈ A and 0 < |x− a| < δ, then

|f(x)− L| < ε.

If the limit is L, then we write limx→a f(x) = L.

Remark. If you wanted to pack the definition of limx→a f(x) = L into symbols, you
could write

∀ε > 0,∃δ > 0, s.t. f ((B(a; δ) \ {a}) ∩ A) ⊆ B(L; ε).

In the case where F = R, we can interpret the definition of the limit using the graph
of f :

L

a
δ δ

ε

ε

x

f(x)

Meaning of ε and δ in the definition of the limit when F = R.

Consider now the case where the domain and codomain of f are in C. The graph
of f consist of points (z, f(z)) where z and f(z) are in C. So to picture the graph we
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would need four dimensions—two for z and two for f(z). An alternative is to use two
copies of the plane, C, and picture the domain and codomain separately. We then try
to picture how f moves points in the domain over to points in the codomain. With
this set-up, here is the relevant picture for understanding the limit definition:

C

domain

A

a
δ

f

CL

ε

codomain

On the left, we have the codomain A of f , and the blue shaded region is the intersec-
tion of an open ball of radius δ with A. Note that for the purposes of the definition of
the limit, we should remove the center of the ball, a. On the right, we have the ε-ball
about L as the “target”, and the blue shaded region is the image of the blue shaded
region on the left. The picture shows that for the chosen value of ε, we were able to
find a suitable δ.

Remarks.

• We are interested in the behavior of the function f near the point a, but not exactly
at the point a. In fact, f need not even be defined at a. For example, consider the
function

f(x) =
x2 − x

x
.

If we try to evaluate f at 0, we get f(0) = 0
0
, which does not makes sense (you

can’t divide by 0), i.e., 0
0
is not a number. However, the limit is exists at x = 0

(and is equal to −1).

• When you see the absolute values in the definition, you should think “distance”.
The distance between the numbers u and v is |u − v|. So you should translate
|f(x)− L| < ε as “the distance between f(x) and L is less than ε”.

• Consider the part of the definition that says 0 < |x − a| < δ. If the expression
had just been |x− a| < δ, without the “0 <” part, the requirement would be that
the distance between the number x and a is less than δ. What does 0 < |x − a|
add? The only way the absolute value of a number such as x − a can be 0 is if
x − a = 0 or, equivalently, x = a. Thus, requiring 0 < |x − a| is just requiring
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that x not equal a. This is just what we need since, after all, the function f may
not be defined at a.

• Note the quantifiers “for all” and “there exists” in the definition. Just as with the
definition of limits of sequences, it takes a while to appreciate their importance,
but they are essential. First take the “for all” part. The definition say that for
all ε > 0, we are going to want |f(x) − L| < ε. Translating: for all ε > 0, we will
want to make the distance between f(x) and L less that ε > 0. Our goal is to
make f close to L, and the ε is a measure of how close. By making ε small and
requiring |f(x)−L| < ε, we are ensuring that f(x) is within a distance of ε from L.

Next, consider the “there exists” part of the definition. It says that if you want f(x)
to be within a distance of ε of L, then it suffices to make 0 < |x− a| < δ. In other
words, you can to make x within a distance of δ of a (remembering that we don’t
care what happens when x = a).

Given any ε > 0 (a challenge to make f(x) close to L), you want to find an
appropriate distance δ > 0 (so that if x is δ-close to a, then f(x) is ε-close to L).

With sequences, the game was: given ε find N . With functions, the game becomes:
given ε, find δ.

Warning. At some point, in proving a statement of the form limx→a f(x) = L, you
will be tempted to have δ be a function of x. That is not allowed! (On the other
hand, δ is typically a function of ε, just as with sequences, N is typically a function
of ε (but cannot be a function of n).)

Example. Consider the function

f : F → F

x 7→ 5x+ 3.

Then limx→2 5x+ 3 = 13.

Proof. Given ε > 0, let δ = ε/5. Then if

0 < |x− 2| < δ,

it follows that

|f(x)− 13| = |(5x+ 3)− 13|
= |5x− 10|
= 5|x− 2|
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< 5δ

= 5 · ε
5

= ε.

Example. Prove that limx→0 x cos(1/x) = 0.
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Graph of f(x) = x cos(1/x).

Proof. Given ε > 0, let δ = ε. Suppose that 0 < |x− 0| < δ; in other words, suppose
that 0 < |x| < ε. Then, since | cos(y)| ≤ 1 for all y, we have

|x cos(1/x)| = |x|| cos(1/x)|
≤ |x|
< δ

= ε.

Example. Proving limit statements for simple function like f(x) = x2 can be a
challenge. For instance, here we prove the “obvious” statement that limx→5 x

2 = 25.
This example points out the need for better tools (e.g., a new-from-old limit theorem
like we had with sequences) allowing us to avoid going down to the level of using ε-δ
arguments.

Proof. Given ε > 0, let δ = min {1, ε/11}, i.e., δ is the minumum of 1 and ε/11.
So δ ≤ 1 and δ ≤ ε/11 (with equality holding in at least one of these). Suppose
that x satisfies 0 < |x − 5| < δ. Since δ ≤ 1, the distance between x and 5 is less
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than 1. It follows 4 < x < 6, and hence, adding 5 across this string of inequalities,
we get 9 < x+ 5 < 11. In particular, |x+ 5| < 11. Therefore,

|x2 − 25| = |(x+ 5)(x− 5)| = |x+ 5||x− 5| < 11|x− 5|.

Now, since δ ≤ ε/11 and |x− 5| < δ, it follows that

|x2 − 25| < 11|x− 5| < 11 · ε

11
= ε,

as required.

Example. Claim: limx→16

√
x = 4.

Proof. Given ε > 0, let δ = 4ε, and suppose that

0 < |x− 16| < δ =
ε

4
.

Then

|
√
x− 4| =

∣∣∣∣(√x− 4) ·
√
x+ 4√
x+ 4

∣∣∣∣
=

|x− 16|
|
√
x+ 4|

<
|x− 16|

4

=
1

4
|x− 16|

<
1

4
δ

= ε.
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