Math 112 lecture for Monday, Week 11

SERIES TESTS III
(Supplemental reading: Section 9.2 in Swanson.)

We continue our discussion of the standard tests for determining whether a series
converges:

. the geometric series test
. the n-th term test
. the comparison test

. the limit comparison test
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5. the alternating series test

6. the absolute convergence test
7. the ratio test

8. the root test

9. the integral test

10. the p-series test.

7. The ratio test.

Proposition (ratio test). Let {a,} be a sequence of positive real numbers, and
suppose that
lim L — R,

n—oo an

Then

(a) if R <1, then ) a, converges;
(b) if R > 1 or R = oo, then ) a, diverges;

(c) if R =1, the test is inconclusive.

Example. The ratio test shows that >~ % converges since, as n — 00,
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Example. To see that the case R = 1 is inconclusive, consider the series Zf;li
and > 7, n—12 The former series diverges and the latter converges, yet we have
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Example. Even if a series does not have positive terms, one can use the ratio test
to consider if a series is absolutely convergent. For instance, we can see that the
series > (—1)"n (5= ) is absolutely convergent (hence, convergent), since
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Note. The tell-tale sign that the ratio test might apply is the presence of factorials
and exponents.

Proof of the ratio test. First suppose that lim,, az;” = R < 1. Fix any real num-
ber r such that 0 < R < r < 1. Our goal, roughly, is to apply the comparison
test to Y a,, comparing it with the convergent geometric series > r". Applying the
definition of the limit, we can find N such that n > N implies |R — “£4| < ¢ where ¢

has been choose small enough so that this condition forces “#% < r:
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Thus, n > N implies that 0 < = < r, ie.,
0 < anpi1 < agr.
In particular, taking n = N + 1, this means

an+2 < anN417

and then
2
aN+3 < ANyaT < AN41T".

Continuing,
3
AN44 < AN437 < AN41T7,



and so on. Letting ¢ := ayy1, we may show by induction that

an+r < erht

for k > 2. Since |r| = r < 1, the series
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converges. By the comparison test, the series >~ 42 G converges. Since this is a
tail of our original series > a,,, the original series converges.

Now suppose that R > 1 or R = co. Then we can take N such that

Ap+1
Qn

n>N =

>1 A1 > Q.

By transitivity of >, we have a,, > ayy1 > 0 for all n > N. Thus, lim,_.. a, # 0,
and the series diverges by the n-th term test. O

8. The root test. We will not discuss this test, but include it here as one of the
standard tests.

Proposition (root test). Let ) a, be a series of nonnegative terms. Suppose that
limay™ =b. If b < 1, the series converges. If b > 1, the series diverges. If b = 1, the

test is inconclusive.
9. The integral test.

Proposition (integral test). Suppose f(z) is a continuous, positive, decreas-
ing function whose domain contains (0,00). Then > f(n) converges if and only
if lim, (f{" f(z) dz) converges, i.e., if and only if [~ f(z) dz converges.

Example. We can use the integral test to give a quick proof that the harmonic series
diverges:
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Thus, > 7, L diverges by the integral test.
Similarly, we may show that )", n—lg converges:

<1 "1 1n 1
/ — dr = lim —dr=lim ——| = lim(——+1)=1.
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Therefore, > >°

e n_12 converges by the integral test.



Proof of the integral test. Consider the standard pictures for the upper and lower
Riemann sums for the integral of f:

graph of f
/
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For each n =1,2,..., we have
area(R,) = base(R,) - height(R,) = 1- f(n) = f(n). (1)
Similarly,
area(r,) = base(r,) - height(r,) =1- f(n+1) = f(n+1). (2)
Further, since f is decreasing and nonnegative
n+1
area(r,) < / f(z)dx < area(R,),
and thus, using (1) and (2),
n+1
fosn < [ fa)de < o) 3)
Summing, we get
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Then note that
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since we are just adding areas under the graph of f. So the result follows from the
ordinary comparison theorem applied to (3). O



10. The p-series test.

Proposition (p-series test). Let p € R. Then the series
1
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converges if and only if p > 1.

Example. The p-series tests says these series converge:
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and these series do not:
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Proof of the p-series test. Apply the integral test. We did the case p = 1 earlier. So
assume p # 1. In that case, we get
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Interesting question. Does the following sum converge:
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The p-series test does not apply since the exponent is not constant.



