
Math 112 lecture for Monday, Week 11

Series tests III

(Supplemental reading: Section 9.2 in Swanson.)

We continue our discussion of the standard tests for determining whether a series
converges:

1. the geometric series test

2. the n-th term test

3. the comparison test

4. the limit comparison test

5. the alternating series test

6. the absolute convergence test

7. the ratio test

8. the root test

9. the integral test

10. the p-series test.

7. The ratio test.

Proposition (ratio test). Let {an} be a sequence of positive real numbers, and
suppose that

lim
n→∞

an+1

an
= R.

Then

(a) if R < 1, then
∑

an converges;

(b) if R > 1 or R = ∞, then
∑

an diverges;

(c) if R = 1, the test is inconclusive.

Example. The ratio test shows that
∑∞

n=0
1
n!

converges since, as n → ∞,

1
(n+1)!

1
n!

=
n!

(n+ 1)!
=

1

n+ 1
−→ 0 < 1.
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Example. To see that the case R = 1 is inconclusive, consider the series
∑∞

n=1
1
n

and
∑∞

n=1
1
n2 . The former series diverges and the latter converges, yet we have

lim
n→∞

1
n+1
1
n

= 1 and lim
n→∞

1
(n+1)2

1
n2

= 1.

Example. Even if a series does not have positive terms, one can use the ratio test
to consider if a series is absolutely convergent. For instance, we can see that the
series

∑∞
n=(−1)nn

(
1
2n

)
is absolutely convergent (hence, convergent), since

lim
n→∞

(n+ 1)
(

1
2n+1

)
n
(

1
2n

) = lim
n→∞

n

n+ 1
· 1
2
=

1

2
< 1.

Note. The tell-tale sign that the ratio test might apply is the presence of factorials
and exponents.

Proof of the ratio test. First suppose that limn→∞
an+1

an
= R < 1. Fix any real num-

ber r such that 0 ≤ R < r < 1. Our goal, roughly, is to apply the comparison
test to

∑
an, comparing it with the convergent geometric series

∑
rn. Applying the

definition of the limit, we can find N such that n > N implies |R− an+1

an
| < ε where ε

has been choose small enough so that this condition forces an+1

an
< r:

1rR

(
R− ε

)
R + ε

Thus, n > N implies that 0 ≤ an+1

an
< r, i.e.,

0 ≤ an+1 < anr.

In particular, taking n = N + 1, this means

aN+2 < aN+1r

and then
aN+3 < aN+2r < aN+1r

2.

Continuing,
aN+4 < aN+3r < aN+1r

3,
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and so on. Letting c := aN+1, we may show by induction that

aN+k < crk−1

for k ≥ 2. Since |r| = r < 1, the series

∞∑
k=2

crk−1 = cr
∞∑
k=0

rk

converges. By the comparison test, the series
∑∞

n=N+2 an converges. Since this is a
tail of our original series

∑
an, the original series converges.

Now suppose that R > 1 or R = ∞. Then we can take N such that

n > N ⇒ an+1

an
> 1 an+1 > an.

By transitivity of ≥, we have an ≥ aN+1 > 0 for all n > N . Thus, limn→∞ an ̸= 0,
and the series diverges by the n-th term test.

8. The root test. We will not discuss this test, but include it here as one of the
standard tests.

Proposition (root test). Let
∑

an be a series of nonnegative terms. Suppose that

lim a
1/n
n = b. If b < 1, the series converges. If b > 1, the series diverges. If b = 1, the

test is inconclusive.

9. The integral test.

Proposition (integral test). Suppose f(x) is a continuous, positive, decreas-
ing function whose domain contains (0,∞). Then

∑
f(n) converges if and only

if limn(
∫ n

1
f(x) dx) converges, i.e., if and only if

∫∞
1

f(x) dx converges.

Example. We can use the integral test to give a quick proof that the harmonic series
diverges:∫ ∞

1

1

x
dx = lim

n→∞

∫ n

1

1

x
dx = lim

n→∞
lnx

∣∣n
1
= lim

n→∞
(lnn− ln 1) = lim

n→∞
lnn = ∞.

Thus,
∑∞

n=1
1
n
diverges by the integral test.

Similarly, we may show that
∑∞

n=1
1
n2 converges:∫ ∞

1

1

x2
dx = lim

n→∞

∫ n

1

1

x2
dx = lim

n→∞
−1

x

∣∣n
1
= lim

n→∞
(− 1

n
+ 1) = 1.

Therefore,
∑∞

n=1
1
n2 converges by the integral test.
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Proof of the integral test. Consider the standard pictures for the upper and lower
Riemann sums for the integral of f :

1

R1

2

R2

3

R3

4

R4

5

R5

6

. . .

upper sum

1

r1

2

r2

3

r3

4

r4

5

r5

lower sum

6

. . .

graph of f

For each n = 1, 2, . . . , we have

area(Rn) = base(Rn) · height(Rn) = 1 · f(n) = f(n). (1)

Similarly,

area(rn) = base(rn) · height(rn) = 1 · f(n+ 1) = f(n+ 1). (2)

Further, since f is decreasing and nonnegative

area(rn) ≤
∫ n+1

n

f(x) dx ≤ area(Rn),

and thus, using (1) and (2),

f(n+ 1) ≤
∫ n+1

n

f(x) dx ≤ f(n). (3)

Summing, we get

k∑
n=1

f(n+ 1) ≤
k∑

n=1

∫ n+1

n

f(x) dx ≤
k∑

n=1

f(n).

Then note that

k∑
n=1

∫ n+1

n

f(x) dx =

∫ 2

1

f(x) dx+

∫ 3

2

f(x) dx+ · · ·+
∫ k+1

k

f(x) dx =

∫ k+1

1

f(x) dx

since we are just adding areas under the graph of f . So the result follows from the
ordinary comparison theorem applied to (3).
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10. The p-series test.

Proposition (p-series test). Let p ∈ R. Then the series∑ 1

np

converges if and only if p > 1.

Example. The p-series tests says these series converge:

∞∑
n=1

1

n3/2
,

∞∑
n=1

1

n1.000001

and these series do not:
∞∑
n=1

1
3
√
n
,

∞∑
n=1

1

n0.999999
.

Proof of the p-series test. Apply the integral test. We did the case p = 1 earlier. So
assume p ̸= 1. In that case, we get∫ ∞

1

1

x
dx =

∫ ∞

1

x−1 dx

= lim
n→∞

∫ n

1

x−1 dx

= lim
n→∞

1

1− p
x1−p

∣∣n
1

=
1

1− p
lim
n→∞

(n1−p − 1)

=

{
1

p−1
if p > 1

∞ if p < 1.

Interesting question. Does the following sum converge:

∞∑
n=1

1

n1+ 1
n

?

The p-series test does not apply since the exponent is not constant.
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